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ABSTRACT

The Amplitude and Phase EStimation (APES) algorithm is a spec-
tral estimation approach that estimates the complex amplitude of
the power spectrum of a random process. Although its resolution
performance has been observed to be slightly better than conven-
tional FFT approaches, but quite inferior to super-resolution ap-
proaches like the Capon algorithm and MUSIC, no quantitative
measure of resolution exists for the APES algorithm. This anal-
ysis provides a new exact two point measure of the large sam-
ple probability of resolution for the APES algorithm, as well as
an approximation useful in capturing finite sample effects. This
probability measure indicates that the APES algorithm resolution
performance is fundamentally limited even in the limit of infinite
signal-to-noise ratio (SNR).

1. INTRODUCTION

The Amplitude and Phase EStimation (APES) algorithm can be
interpreted as a finite impulse response (FIR) filtering approach to
spectral estimation. It focuses on complex amplitude estimation
and can be derived via several optimization criteria, among which
is a maximum-likelihood (ML) formulation [7, 6]. If each of the
data snapshots is assumed independent identically complex Gaus-
sian distributed, then the APES spectrum corresponds to the ML
estimate of the data spectral complex amplitude. It is straightfor-
ward to continue with the ML formulation of APES, however, to
obtain an optimal estimate of the frequency of a single sinusoid in
colored noise. This leads to a well-known form of ML signal pa-
rameter estimation requiring the intermediate estimation of a col-
ored noise covariance. This form appears quite often in adaptive
array applications (see [8] and refs. therein). The primary differ-
ence between the ML frequency estimator and the ML complex
amplitude estimator (or APES) lies in the filter weight normaliza-
tion. This present analysis defines a new two point measure of the
probability of resolution for the APES algorithm (i.e. the ML com-
plex amplitude estimator), and the ML frequency estimator. The
large sample limiting performance differences resulting from the
differing weight normalizations are explored herein via exact new
closed form expressions for the two point probability of resolution
for both the APES algorithm and the ML frequency estimator, both
accounting for signal model mismatch [3] and colored noise. The
additional impact of finite sample effects [2, 9, 5] on resolution
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are explored for the ML frequency estimator from which a useful
approximation for the APES probability follows.

2. THE APES ALGORITHM

The goal of spectral estimation is to obtain from a finite set of
data measurements an estimate of the power distribution over fre-
quency of a random process. This present analysis shall focus on
direction of arrival (DOA) estimation with uniform linear arrays
(ULAs), although applicable to a broad class of problems. Thus,
the power distribution over spatial frequency, or angle of arrival,
is of interest, and data observations are taken in space across an
array of sensors. Let the set of data observations (snapshots) taken
from an N element array for L looks be denoted collectively by
the N × L data matrix X = [x(1)|x(2)| · · · |x(L)]. Each snap-
shot is assumed complex Gaussian distributed such that x(l) ∼
CNN [S(θT )ejω(l−1)v(θT ),R] for l = 1, 2, . . . , L where the sig-
nal angle of arrival is θT , and the array response is v(θT ), and the
complex signal amplitude is given by S(θT ), and the known rela-
tive phase progression from look-to-look is ejω(l−1) (e.g. Doppler
phase in radar), and R is the colored noise covariance. The APES
algorithm chooses filter w and complex amplitude S(θ) as joint
minimizers of the following criterion:

min
w,S

LX
l=1

˛̨̨
wHx(l) − S(θ)ejω(l−1)

˛̨̨2
. (1)

The APES complex amplitude spectral estimate at angle θ is given
by

bSAPES(θ) =
vH(θ) bR−1µ

vH(θ) bR−1v(θ)

�
= bwH

APES(θ)µ (2)

where µ
�
= 1

L
Xh, and h = [1, e−jω, . . . , e−jω(L−1)]T , andbR �

= XXH − LµµH , and the filter weight bwAPES(θ) has been
defined. This spectral estimate likewise follows from a ML formu-
lation of the problem [7, 6]. Further maximization of the likelihood
function results in the following estimate of the spatial frequency
or angle of arrival θT of a single signal:

bθT = arg max
θ

˛̨̨
vH(θ) bR−1µ

˛̨̨2
vH(θ) bR−1v(θ)

�
=

˛̨̨
L bwH

FE(θ)µ
˛̨̨2

(3)

where the filter weight used for frequency estimation bwFE(θ) has
been defined. This frequency estimate is well-known and widely
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used [8]. The large sample filter weights for APES and frequency
estimation (FE) are respectively denoted as

wAPES(θ) =
R−1v(θ)

vH(θ)R−1v(θ)
,

wFE(θ) =
R−1v(θ)p

vH(θ)R−1v(θ)

(4)

and the APES large sample spectral estimate as SAPES(θ)
�
=

wH
APES(θ)µ. One filter is asymptotically efficient for complex

amplitude estimation [10] while the other is asymptotically effi-
cient for frequency estimation of a single sinusoid in a colored
noise background [11].

Under the complex Gaussian data assumptions made herein,
it can be proven that µ and bR are statistically independent and
further that µ is complex Gaussian distributed and bR has a cen-
tral complex Wishart distribution [11]. Thus, the exact probability
density function (pdf) for the APES complex amplitude estimate
is known [10], and accurate prediction of the mean squared error
performance of the ML frequency estimator non-asymptotically is
possible [11]. The APES algorithm, however, can be used in an
ad hoc manner to obtain estimates of the location of spectral line
components [4, 6], i.e. to estimate the frequencies of pure sinu-
soids (planewaves in space). Refs. [4, 6] show that the APES
resolution capability is slightly better than conventional FFT pro-
cessing, but inferior to super-resolution approaches like the Capon
algorithm [1, 12] and MUSIC. It is desired in this analysis to pro-
vide a useful quantitative statistical measure for the limiting large
sample resolution performance of the APES spectral estimator ac-
counting for signal mismatch and colored noise. In addition a use-
ful approximation is obtained for the APES and FE finite sample
resolution performance.1

3. SPECTRAL RESOLUTION AND THE APES
AMBIGUITY FUNCTION

The ability of an algorithm to resolve two closely spaced sources
is often measure by quantifying the likelihood of a “dip” appearing
in the estimated spectrum between the two sources. The ambiguity
function provides much insight into the APES algorithm’s resolv-
ing capacity. Let the mean of each snapshot containing two closely
spaced sources be given by

d
�
= γ0v(θ0) + γ1v(θ0 + δθ) (5)

where δθ is the angle separation and parameters γ0 and γ1 can be
used to adjust SNR levels. The natural definitions of the APES
ambiguity function is given by:

ψAPES(θ)
�
=

˛̨̨
wH

APESd
˛̨̨2

=

˛̨
vH(θ)R−1d

˛̨2
[vH(θ)R−1v(θ)]2

. (6)

Although the concept of resolution lacks a rigorous definition, the
widely accepted rule is the following: If bS(θ) is the complex spec-
tral estimate obtained from an algorithm, then the two signals are

1The ML frequency estimator described is that which assume only a
single signal is present in the data. If multiple signals are present, then
the ML estimator takes on a different form requiring joint estimation of
the multiple frequencies. Often the number of signals present is unknown.
Thus, it is common to take the ad hoc approach of scanning the search
space over frequency and look for peaks to identify the presence of a signal
[12].

said to be resolved if˛̨̨ bS(θ0 + δθ/2)
˛̨̨
< α ·

“˛̨̨ bS(θ0)
˛̨̨
+

˛̨̨ bS(θ0 + δθ)
˛̨̨”

(7)

where parameter α defines the amount of dip; e.g. α =
√

0.5
for equal power sources indicates at least a 3dB dip in power be-
tween these signals. Since the estimated spectrum is a stochastic
process, some approximation of the probability of this three point
event would be most useful. Note from the ambiguity function that
resolution performance is akin to analysis in the presence of signal
model mismatch [3, 5].

4. TWO POINT MEASURE OF THE APES ALGORITHM
PROBABILITY OF RESOLUTION

A useful two point measure of the probability of resolution pro-
viding accurate prediction of the SNR at which sources can be
resolved by the APES algorithm can be defined. Let the snap-
shots be distributed as x(l) ∼ CNN (d,R) where the data mean
is given by equation (5). Define parameter θMP as the parameter
value of the source with the smallest power out of the ambiguity

function, i.e. θMP
�
= arg min

θ0,θ0+δθ
ψAPES(θ). The large sample

APES probability of resolution can be defined as

P APES
res (θ0, θ0 + δθ)

�
=

Pr [|SAPES (θ0 + δθ/2)| <
√

α · |SAPES(θMP )|] . (8)

Similarly, the large sample probability of resolution for the ad hoc
approach of using the single signal ML frequency estimator to ob-
tain estimates of multiple signals is given by

P FE
res (θ0, θ0 + δθ)

�
=

Pr
ˆ˛̨
wH

FE (θ0 + δθ/2) µ
˛̨
<

√
α · ˛̨

wH
FE(θMP )µ

˛̨˜
.

(9)

Since perfect knowledge of the data covariance is assumed, ran-
dom variations essentially derive from the presence of µ, which is
primarily a function of the SNRs resulting from the choice of γ0

and γ1. These probabilities have been derived in closed form in
[11]. The next subsections summarize the algorithms for comput-
ing these probabilities.

4.1. Large Sample APES Resolution Probability

A complex non-central chi-squared random variable of M com-
plex degrees of freedom and non-centrality parameter δ will be
denoted by χ2

M (δ). Define the function Je as follows:

Je(δ1, δ2, h)
�
= Pr

„
1χ

2
1(δ1)

2χ2
1(δ2)

> h

«
=

„
h

1 + h

«

×
»
1 +

1

h
Q1

„
hδ2

1 + h
,

δ1

1 + h

«
− Q1

„
δ1

1 + h
,

hδ2

1 + h

«–
(10)

where the generalized Marcum-Q-function is given by

QM (u, δ)
�
= Pr

`
χ2

M (δ) > u
´

=

Z ∞

u

“a

δ

” (M−1)
2

e−(a+δ)IM−1(2
√

δa)da (11)
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and IM−1(x) is the modified Bessel function of the first kind of
order M − 1. Define the following function Pe in terms of Je:

Pe(δ1, δ2, λ1, λ2)
�
= Pr

ˆ
1χ

2
1(δ1)λ1 + 2χ

2
1(δ2)λ2 > 0

˜

=

8><
>:

Je(δ1, δ2, lλ), sign(λ1) = 1, λ1, λ2 �= 0
1 − Je(δ1, δ2, lλ), sign(λ1) = −1, λ1, λ2 �= 0
1, sign(λ1) = 1, λ2 = 0
0, sign(λ1) = −1, λ2 = 0

(12)

where lλ
�
= −λ2/λ1.

The algorithm for computation of the APES algorithm large
sample probability of resolution is as follows:

1. Let θMP = θ1 and θ0 + δθ/2 = θ2. Define the following
matrices: V = [v(θ1)|v(θ2)], and AAPES a diagonal ma-
trix with components [AAPES ]k,k = 1/vH(θk)R−1v(θk),
k = 1, 2. Form the matrix of two point weight vectors
WAPES = R−1VAAPES .

2. Compute the covariance RWX
�
= WH

APESRWAPES and
its matrix square root R1/2

WX .

3. Form the following 2 × 2 matrix and eigen-decompose:

R
1/2
WX

»
α 0
0 −1

–
R

1/2
WX = QH

WXΛWXQWX . (13)

4. Choose the desired signal levels via choice of γ0 and γ1.
Choose d as in (5) and form the following 2 × 1 complex
vector

ρSNR =
√

L · QWXR
−1/2
WX WH

APESd.

5. Use the magnitude squared of the elements of ρSNR and
the eigenvalues ΛWX to compute the desired pairwise error
probability via

P APES
res (θ0, θ0 + δθ) =

Pe

`|ρSNR,1|2, |ρSNR,2|2, λWX,1, λWX,2

´
.

(14)

The algorithm for computing P FE
res (θ0, θ0 + δθ) the resolution

probability for the FE approach is exactly the same as the APES
algorithm with the minor change that the diagonal entries of the
diagonal matrix A in step 1) be replaced by

[AFE ]k,k = 1/
p

vH(θk)R−1v(θk), k = 1, 2. (15)

4.2. Fundamental Limit on APES Algorithm Resolution

Analysis of these resolution probabilities indicates that the APES
resolution performance is fundamentally limited by the smallest
nonzero angle (or frequency) seperation δθ satisfying the condi-
tion that

|ρSNR,1| = |ρSNR,2|, (16)

which for the white noise case can be expressed in terms of the
ambiguity function as the smallest nonzero δθ such that:

ψAPES(θ) = ψAPES

„
θ +

δθ

2

«
(17)

even in the limit of infinite SNR. Such a limit on resolution per-
formance is well-known for the conventional FFT approach [12],
but is somewhat surprising for this adaptive approach since Capon
and MUSIC resolution improves with SNR. The APES resolution
limit, however, can at times modestly exceed the Fourier limit [4]
(better resolution is predicted at times when sources are of unequal
power).

4.3. On Finite Sample Effects

The previous section assumed perfect knowledge of the data co-
variance parameter R and explored resolution exclusively as a
function of SNR. Finite sample effects will impact the SNR and
the fidelity of its estimate bR. Thus, it is desired to understand the
combined impact of finite sample size L on estimates µ and bR
with regards to resolution. To this end, the two point measure for
the ML FE is defined:

P̃ FE
res (θ0, θ0 + δθ)

�
=

Pr
ˆ˛̨ bwH

FE (θ0 + δθ/2) µ
˛̨
<

√
α · ˛̨ bwH

FE(θMP )µ
˛̨˜

.
(18)

It can be shown [11] that the exact probability is given by an ex-
pression of the form

P̃ FE
res (θ0, θ0 + δθ) =

Z 1

0

dβ · PβL−N+3,N−2(β; δV⊥)

×
Z 0

−∞
dF · PF∆(F ;∆)

Pe

h
β|ρ̃SNR,1(F )|2, β|ρ̃SNR,2(F )|2, λ̃WX,1(F ),

λ̃WX,2(F )
i
.

(19)

where the double integral is with respect to two independent ran-
dom variables that include a non-central complex beta distribution
and a variant on the central complex F distribution. The beta ran-
dom variable captures the loss in SNR due to covariance estima-
tion [9, 5], as evidenced by its multiplication of the terms gov-
erning SNR. The central F statistic captures the statistical depen-
dence among the two adaptive weights due to their reliance upon
the same covariance estimate.

An approximation of the finite sample APES resolution proba-
bility is possible by recognizing that the beta random variable rep-
resents the loss in SNR due to covariance estimation. Modifying
the large sample approximation by replacing the SNR variables γ
with

γ̃k = E{βL−N+3,N−2(δV⊥)} · γk, for k = 0, 1 (20)

leads to the approximation of the APES finite sample resolution
probability. The beta expectation is known in closed form [5, 11]
and shown to be less than unity.

5. NUMERICAL EXAMPLES

Consider two closely spaced planewave sources of equal power as
observed on an N = 24 element ULA with a 4.8 degree beamwidth.
One signal is placed at array broadside and the other δθ away
from broadside. The large sample probability of resolution for the
APES and FE algorithms is plotted in Figure 2 (A) as a function
of the source separation δθ for various SNRs (element level SNR
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after averaging L snapshots). The APES and FE resolution perfor-
mance is nearly identical in white noise and improves with signal
strength, but is clearly limited where the limit is given by condition
(17) and illustrated in Figure 1. Figure 2 (B) shows the finite sam-
ple resolution probability for the FE algorithm when each snap-
shot has a -20dB element level SNR (dashed lines) alongside its
large sample probability having an integrated element level SNR
of 0dB. Thus, for low -20dB SNR signals at least 5N samples
are required to resolve with confidence at the APES/FE resolution
limit for this array. Lastly, Figure 2 (C) illustrates the accuracy of
the approximation of the finite sample resolution probability ob-
tained via (20) for same array when each snapshot has a -20dB
element level SNR. The accuracy of the approximation obviously
improves with sample support.

6. CONCLUSIONS

A new two point measure for the probability of resolution for the
APES algorithm has been defined and derived in closed form for
the large sample case and approximated for the finite sample case.
Although empirical studies have been made [4], this present anal-
ysis provides the first quantitative measure of resolution perfor-
mance for the APES algorithm. The resolution probability ac-
counts for signal model mismatch and colored noise. The APES
algorithm resolution performance is fundamentally limited even
at very large SNRs. This fundamental limitation is reminiscent
of conventional approaches known to obey the Fourier/Rayleigh
limit [12], although APES can do slightly better. An exact condi-
tion for the angle separation corresponding to this resolution limit
for APES was obtained, and for white noise expressed in terms of
the ambiguity function.
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