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ABSTRACT

In this paper, an approach for determining the number of emitters
for array processing is proposed based on the asymptotic distrib-
ution of eigenvalues of a sample covariance. Instead of using the
set of the smallest eigenvalues, different eigenvalue groupings are
used as the competing models. The information theoretic crite-
rion is used for determining the optimal grouping. The approach
is able to solve the eigenvalue correspondence problem associated
with most emitter number detection algorithms and demonstrate
improved detection performance under certain circumstances. The
approach is computationally more efficient than the order statistics
based approaches. Computer simulations are used to demonstrate
the performance of the proposed approach.

1. INTRODUCTION

In high resolution array processing, one of the most important
problems is the determination of the number of emitters present
[1]. In the past, several approaches have been proposed includ-
ing the hypothesis testing method [2] and approaches based on the
application of the information theoretic criteria [3][4][5]. The ap-
plication of the information theoretic criteria for determining the
number of emitters is attractive because they usually result in sim-
ple algorithms, and do not require threshold settings according to
subjective judgment. In [6], Wax and Kailath derived the infor-
mation theoretic criterion for determining the number of emitters
based on the eigendecomposition of the sample covariance. Their
approach is computationally simple and convenient. In [10], an
alternative information theoretic criterion was proposed by Zhang
et al.. In their approach, the likelihood function is formed based
on the asymptotic distribution of the eigenvalues of the sample co-
variance. By excluding the eigenvectors from the parameter space,
they use the parameter space of a reduced dimension for alleviating
the inherent under- and over-penalization problems with Wax and
Kailath’s formulation. Although this approach is able to provide
an improved performance over the method by Wax and Kailath, it
requires nonlinear optimization procedures and is computationally
demanding.

However, the two approaches implicitly rely on the assump-
tion that the ordered eigenvalues of the sample covariance corre-
spond to those of the true covariance matrix. This is not necessar-
ily true when the number of array samples is not infinite. Fishler
and Messer [7] tackled this problem by using ordered statistics of
the sample covariance. They built the probability density func-
tion (PDF) of the ordered sample eigenvectors from that of the

non-ordered ones. Their approach, however, is complex and in-
volves a huge computationally burden. In this paper, we take on
the problem from the model selection viewpoint. In the approach,
the information theoretic criteria is applied together with cluster-
ing techniques. First, we cluster the eigenvalues of the sample
covariance into two groups: the signal and the noise component
group. The clustering is performed for different combinations of
the eigenvalues under different hypothesized emitter numbers. The
different groupings are considered as the competing models for the
distribution of the eigenvalues of the sample covariance matrix.
The information theoretic criteria are formulated based on the as-
ymptotic distribution of the non-ordered eigenvalues of the sample
covariance. They are then used as the model selection criteria to
find the most competitive, or the optimal grouping. The optimal
number of emitters is determined by the number of components
of the optimal signal component group. The proposed approach
is able to overcome the eigenvalue correspondence problems as-
sociated with the conventional approaches. Since the maximum
likelihood estimates for different groupings can be obtained ana-
lytically, it does not require any complex numerical optimization
procedures and is computationally efficient. In addition, statistical
analysis shows that the approach is consistent. Computer simula-
tions are used to demonstrate the performance and effectiveness of
the proposed approach.

2. ARRAY SIGNAL MODEL

Consider an array of M omni-directional sensors and K (K < M )
narrow-band signals in the far-field of the array. The medium is
assumed to be isotropic and non-dispersive so that the wavefronts
of a far-field signal can be approximated by plane waves. Using
analytic representations, the sensor output can be written as [8]

x(t) = A(θ)s(t) + n(t), (1)

where θ denotes the direction of arrival (DOA) vector, and x(t),
s(t) and n(t) are the array data, signal and noise vector, respec-
tively. We assume that s(t) and n(t) are independent and iden-
tically distributed (i.i.d) Gaussian processes with zero mean, and
they are statistically independent. We also assume that the source
signals are non-coherent, which means that its covariance matrix
is of full rank. The covariance of the noise vector is assumed to be
Rw = σ2

wI , where I denotes an identity matrix of size M × M .
A(θ) is the array composite steering matrix determined by the ar-
ray geometry and the DOA vector θ, and is assumed to have a full
column rank. This condition is imposed to ensure that the DOA
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parameters can be uniquely identified [6]. It can be verified that
the covariance of x(t) is given by

Rx = E[x(t)xH(t)] = A(θ)RsA
H(θ) + σ2

wI, (2)

where superscript H denotes conjugate transposition, Rs is the
covariance of s(t). It can be shown that the eigenvalues of Rx are
distributed as follows

λ1 > λ2 > . . . λK > λK+1 = λK+2 . . . λM = σ2
w, (3)

where the smallest eigenvalues has a multiplicity of (M − K).

3. INFORMATION THEORETIC CRITERIA

The information theoretic criteria take the form of a penalized
likelihood function, i.e., a negative log likelihood function plus a
penalty function. The penalty function is proportional to the num-
ber of parameters used in the probabilistic model. Given a set of
observations and a family of models, the application of the infor-
mation theoretic criteria to model selection problems is to find the
model parameters that minimize the criterion

C = − log p(X | Θ̂) + b [ξ(k), N ], (4)

where Θ̂ denotes the maximum likelihood estimate of model pa-
rameter Θ, p is a family of conditional PDFs, ξ(k) denotes the
number of free parameters in Θ, and b [ξ(k), N ] is the penalty
function. The penalty function can take different forms depending
on the criterion used. For the Akaike’s AIC, ξ(k) is equal to the
number of free parameters. In the large sample limit, the penalty
functions for the Rissanen’s MDL and Schwarz’s criteria are es-
sentially the same. They are given by

bMDL[ξ(k), N ] =
1

2
ξ(k) log N. (5)

Denote R̂x as the sample covariance of x(t)

R̂x =
1

N

N�
t=1

x(t)xH(t). (6)

Let {li, ui; i = 1, 2, . . . , M} denote the eigenvalues and corre-
sponding eigenvectors of R̂x, where the eigenvalues are arranged
in a decreasing order, l1 ≥ l2 . . . lK ≥ lK+1 . . . lM . Using the
spectral representation of Rx, Wax and Kailath obtained the max-
imum likelihood estimates of the eigenvalues as

λ̂i = li, i = 1, 2, . . . , K, and σ̂2
w =

1

M − K

M�
i=K+1

li. (7)

The maximum likelihood estimate of the eigenvectors is given by
the corresponding eigenvectors of the sample covariance R̂x under
certain uniqueness conditions [9]. Substituting the maximum like-
lihood estimates (7) back to the likelihood function and adding the
penalty terms, Wax and Kailath’s formulation of the information
theoretic criterion [6] is obtained as

Cw(k) = N(M − k) log γ(k) + b [ξ(k), N ], (8)

where γ(k) is the ratio of the arithmetic to the geometric mean of
the k smallest eigenvalues

The information theoretic criterion formulated by Zhang at al.
[10] is based on the asymptotic distribution of the eigenvalues of
the sample covariance matrix. In the approach, the eigenvectors
of the sample covariance are excluded from the parameter space
because they can be shown to be irrelevant to the decision on the
number of signals. It is inferred that the information gained from
the smaller parameter space is able to better offset the uncertainty
introduced. It follows that the information theoretic criterion is
given by

Cz(k) = − log p(l1, . . . , lM ) + b[ξ(k), N ], (9)

where p(·) denotes the conditional likelihood function of li on λi,
for i = 1, 2, . . . , M . The maximum likelihood estimates λ̂i and
σ̂2

w are obtained by solving the following nonlinear equations

λ̂m = lm − λ̂m

N

k�
i=1,i�=m

λ̂i

λ̂m − λ̂i

− M − k

N

λ̂mσ̂2
w

λ̂m − σ̂2
w

σ̂2
w =

1

M − k

M�
i=k+1

li +
1

N

k�
i=1

λ̂iσ̂
2
w

λ̂i − σ̂2
w

. (10)

Note that since (10) are a set of nonlinear equations, closed-form
solutions do not exist and numerical techniques such as the New-
ton’s method are required. In (9), b[ξ(k), N ] = k for the AIC
criterion and b[ξ(k), N ] = 1

2
log N for the MDL criterion.

3.1. The proposed criterion

In this section, we formulate a new criterion for determining the
number of emitters based on the application of the information
theoretic criteria to the eigenvalues of the sample covariance ma-
trix. The criterion can counter the non-correspondence eigenvalue
problem while requiring less computations when compared to other
approaches. In the approach, the eigenvalues of the sample co-
variance are clustered into two groups: the signal and the noise
component group. The clustering is performed for different com-
binations of the eigenvalues under different hypothesized emitter
numbers. The different groupings are then considered as the com-
peting models, and the information theoretic criteria are used as
the model selection criteria for choosing the most competitive, or
the optimal model among them. The optimal number of emitter is
given by the number of components of the optimal signal compo-
nent group.

Denote the non-ordered eigenvalues of the sample covariance
matrix as {l̃i; i = 1, 2, . . . , M}. Assume that l̃i corresponding
to λi. It is known that the first K distinct eigenvalues {l̃i; i =
1, 2, . . . , K} are independent of each other and is asymptotically
Gaussian distributed [9]

f(l̃i | λi) =

√
N√

2πλi

exp

�
−N(l̃i − λi)

2

2λ2
i

�
, (11)

for i = 1, 2, . . . , K. The asymptotic joint PDF of the eigenvalues
corresponding to the last (M − K) smaller l̃i is given by
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f(l̃K+1, . . . , l̃M | σ2
w) =

M�
i,j=K+1,j>i

�√
N(

l̃i
σ2

w

− l̃j
σ2

w

)

�2

·
M�

i=K+1

√
N

Γ(i − K)σ2
w

√
2π

exp

�
−N(l̃i − σ2

w)2

2σ4
w

�
,(12)

where Γ(·) denotes the real Gamma function. The larger eigenval-
ues, {l̃i; i = 1, 2, . . . , K}, and the smaller eigenvalues, {l̃; i =
K + 1, K + 2, . . . , M}, are statistically independent.

Given the eigenvalues of the sample covariance, we cluster
them into two groups under the hypothesis of k source signals:
one group that contains k eigenvalues corresponding to the first
k eigenvalues of Rx, and another group that consists of the rest
M − k eigenvalues corresponding to σ2

w. For the assumed group-
ing g1 = {l̂i; , i = 1, 2, . . . , k}, where l̂i corresponds to λi,
i = 1, 2, . . . , k, and g2 = {l̂i; , i = k + 1, k + 2, . . . , M} corre-
sponding to σ2

w, the information theoretic criterion can be written
as

f(g1, g2 | λ1, λ2, . . . , λk, σ2
w) =

f(l̂K+1, . . . , l̂M | σ2
w)

k�
i=1

f(l̂i | λi), (13)

where f(l̂K+1, . . . , l̂M | σ2
w) and f(l̂i | λi) are given by (11) and

(12), respectively. The maximum likelihood estimates of λi, i =
1, 2, . . . , k and σ2

w are obtained by maximizing the likelihood func-
tion (13), which are given by solutions to the following quadratic
equations

λ2
i + Nl̂iλi − Nl̂2i = 0, i = 1, 2, . . . , k

σ4
w +

�
N

(M − k)2

M�
i=k+1

l̂i

�
σ2

w − N

(M − k)2

M�
i=k+1

l̂2i = 0.

The above quadratic equations each can be verified to have
one positive and one negative root. Since λi and σ2

w are eigen-
values of a positive semi-definite sample covariance matrix, they
are positive and the positive roots should be selected as the max-
imum likelihood estimates. The information theoretic criteria is
then given by substituting the maximum likelihood estimates back
to the negative log likelihood and adding the penalty terms

CN(k) = − log L(k) + b[ξ(k), M ], (14)

where L(k) denotes the maximized likelihood function under the
hypothesis of k emitters. The free parameters are k distinct and
one identical eigenvalues. The number of free adjustable parame-
ters is then given by ξ(k) = k + 1. The penalty function for the
MDL criterion is given by b = 1

2
(k + 1) log M . The optimal

grouping is determined as the one for which the criterion is mini-
mized. The optimal number of emitters is estimated as the number
of components of the optimal signal group.

For each hypothesized number of emitters, k(k < M), the
number of groupings is the combinations of M eigenvalues taken
k at a time, which is given by

Dk =

�
M
k

�
=

M !

(M − k)!k!
. (15)

The total number of groupings for k = 0, 1, . . . , M − 1 is then
given by

D =

M−1�
k=0

�
M
k

�
= 2M . (16)

4. CONSISTENCY ANALYSIS

We now consider the statistical consistency of the estimator. Con-
sistency is one of the most important performance measures for an
estimator. A consistent estimate converges to its true values when
the number of measurements tends to infinity. The difference term
∆C(k) = CN(k) − CN (K) can be written as

∆C(k) = − log
L(k)

L(K)
+

1

2
(k − K) log N. (17)

where the first term is the negative log of a likelihood ratio. Define
the parameter space

Ωk = {λi, i = 1, 2, . . . , M | k of them are identical}. (18)

When k > K, we can write the ratio L(k)/L(K) as the like-
lihood ratio test statistic for the following null and alternative hy-
potheses

H0 : {λi} ∈ ΩK , H1 : {λi} ∈ Ωk (19)

which have M − K − 1 and M − k − 1 constraints, respectively.
According to [11], since Ωn = ΩM−K is a subspace of Ωa =
ΩM−k , it follows that when H0 holds, the likelihood ratio static
−2 log{L(K)/L(k)} has an asymptotic χ2

k−K distribution, and
the probability that 2∆C(k) ≥ 0 is given by

Prob {−2 log
L(K)

L(k)
≤ (k − K) log N}, (20)

indicating that CN(k) ≤ CN(K) asymptotically with probability
one when N → ∞.

When k < K, consider the asymptotic convergence of the in-
formation theoretic criterion (14). Using the Taylor series expan-
sions, the maximum likelihood estimates λ̂i and σ̂2

w can be written
as [12]

lim
N→∞

λ̂i = l̂i and lim
N→∞

σ̂2
w =

α1

α2

, (21)

where

α1 =
M�

i=M−k

l̂2i , and α2 =
M�

i=M−k

l̂i. (22)

Since R̂x → Rx with probability one [13], the ordered eigenval-
ues of the sample covariance matrix each converge asymptotically
to those of the true covariance matrix with probability one, i.e., li
converges to λi with probability one when N tends to infinity. It
follows that
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λ̂i → λi, and σ̂2
w →

M�

i=k+1

λ2
i

M�

i=k+1

λi

, (23)

asymptotically with probability one. Under the hypothesis of k
emitters, ∆CN (k)/N can be written as

∆C(k)

N
=

1

2
{α2

2(K)

α1(K)
− α2

2(k)

α1(k)
+ (K − k)}. (24)

where the O(1/N) terms are ignored. When N tends to infinity,
l̂i → λi, and λK+1 = λK+2 . . . = λM . We get

α2
2(K)

α1(K)
→ (M − K). (25)

Using the well known Cauchy-Schwarz inequality [14], we can
show that

α2
2(k)

α1(k)
< (M − k), (26)

for k < K. It follows that CN (k) > CN(K) for k < K when
N → ∞, i.e., asymptotically, CN (k) achieves the minimum at
K. Then, combining the case of k > K and k < K, it can be
concluded that C(k) is asymptotically minimized when k̂ = K.

5. NUMERICAL EXAMPLES

Computer simulations are used to demonstrate the effectiveness of
the proposed algorithm. An equi-spaced linear array of eight sen-
sors is simulated, with half the source wavelength spacing. The
sensors are assumed to be omni-directional with unit gain. Three
narrow-band source signals with equal power are assumed which
impinge on the array at 10o, 20o and 30o measured to the normal
of the array. They are simulated as i.i.d Gaussian processes with
zero-mean. Figure (1) shows the variation of the detection error
rate via the signal-to-noise ratio (SNR) for the Wax method, the
approach by Zhang et al. and the proposed approach. The number
of samples is N = 100. The SNR varies from −10dB to 10dB
with a step of 2dB. At each SNR, the test is repeated 100 times
to obtain the averaged results. In terms of the detection error rate,
it can be seen that the proposed approach outperforms the method
by Wax at low SNRs. When the SNR increases, all three methods
approach the zero detection error rate. The figure also shows that
the proposed algorithm performs almost as well as the approach
by Zhang et al.. However, the proposed approach is computation-
ally more efficient and no nonlinear optimization procedures are
necessary.
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