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ABSTRACT

We address the problem of estimating the frequencies and damp-
ing factors of a multidimensional signal which consists of sev-
eral damped complex exponentials. Such a problem is of interest
in several applications such as nuclear magnetic resonance spec-
troscopy where the 2-dimensional (2D) frequencies and damping
factors are used to determine the structure of proteins. We herein
propose a new algorithm which exploits the multiple-invariance
structure that exists in the data model. Unlike search-based pa-
rameter estimation techniques (such as D-MUSIC of [5]), which
have been developed for multidimensional harmonic retrieval of
damped exponentials, our algorithm uses polynomial rooting to
efficiently obtain the parameters of interest in a search-free fash-
ion.

1. INTRODUCTION

Numerous parameter estimation problems arising in sensor array
processing, mobile communications, parametric MIMO channel
estimation and radar signal processing can be formulated as a one-
or multi-dimensional (MD) pure (undamped) harmonic retrieval
problem. However, there are other important applications such as
MD nuclear magnetic resonance (NMR) spectroscopy, where the
underlying signal model represents a sum of several damped MD
exponentials, and the estimation of both the MD frequencies and
damping factors are of special interest because these parameters
are used to identify protein structure of a probe.

Several computationally efficient search-free subspace-based
methods have recently been formulated for the undamped har-
monic retrieval problem that either belong to the class of ESPRIT-
type methods [1, 2, 3, 4] or to the class of so-called rooting-based
methods [6]. While the ESPRIT-type methods can be naturally
generalized to the damped harmonic scenarios [4], this is not the
case for the rooting-based methods. However, the ESPRIT-based
methods either do not take advantage of the full invariance struc-
ture contained in the data [1, 2, 4], or lead to computationally more
demanding solutions such as multiple-invariance (MI) ESPRIT of
[3].

In this paper, we take a general approach to the MD damped
harmonic retrieval problem and combine the MI-ESPRIT concept
with polynomial rooting in order to retain the benefits of both ap-
proaches, i.e. computational efficiency, applicability to undamped
and damped harmonic retrieval problem, and exploitation of com-
plete MI structure. Using this approach, a novel high-resolution
search-free technique for the problem of interest is proposed. It is
proven that our algorithm yields unique solutions under relatively
mild conditions. Simulation results illustrate the performance im-
provements achieved by our algorithm relative to a popular method
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of [4] which is known to be one of the best techniques developed
for harmonic retrieval of damped exponentials.

2. SIGNAL MODEL

For the sake of presentation simplicity, we restrict ourselves to the
2D damped harmonic retrieval problem. Extensions to the MD
signal model are immediate. Consider the following 2D signal
which is the mixture of P damped exponentials:

p
Tri = cpay VoYY (1)

p=1
with the generators a, = e®*rT9“Lp and b, = e*2rTiv2p
(p =1, ..., P) characterizing the damped harmonics, see [5] and

reference therein. We assume that a1, and ag,, are the damp-
ing factors (i.e., |a1,p| < 1 and |agz,,| < 1) of the pth harmonic
along the a- and the b-axes, respectively. Similarly, wq , and wa, p
denote the frequencies of the pth harmonic observed along the a-
and the b-axes, and ¢, denotes the complex amplitude of this har-
monic. The sample supports along the a- and b-axes are given by
k=1,...,Kandl=1,...,L.

To obtain a low-rank data model of a sufficiently large dimen-
sion, we rearrange the data samples taken along a- and b-axes to
form a (K1L1) X (K2L2) matrix [4, 5]

Yl YQ . YKQ

- Y. Y; Y ko141

Y = . . ) . @)
Y, Yk 41 Y kot k-1

where
Tn,1 Tn,2 - Tn, L,
Tn,2 Tn,3 . Tn,Lo+1
Y., = . : . . 3)

Tn,Ly Ln,Li+1 Tn,Lo+Ly—1

and the integers K1, Ko, L1 and L that satisfy
K:K1+K2+1, L:L1+L2+1 (4)

are chosen so that the reassembled data matrix Y becomes as
“large” as possible. It is simple to see that, if we choose the inte-
gers so that the minimum of K1 L; and K2 Lo is maximized, then
the achievable rank of Y, and consequently, the maximum number
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of identifiable signals is maximized. The reassembled data matrix
in (2) allows a simple representation [4, 5]

Y = H,CHY &)
where
H; = B;oA;, H; e CLdxr (6)
[Ailkpy = af ™Y, A; e CHxP (7
[Bili, = b™Y, B;eCli*P ®)
C = diag{ci,...,cp} 9)

for i = 1,2, and “o” denotes the Khatri-Rao product of two ma-
trices (the column-wise Kronecker product), i.e., Eo F = [e1 ®
fi,e2® fo, ... | where e, and f, are, respectively, the kth
columns of E and F', and ® denotes the Kronecker product. The
singular value decomposition of the reassembled data matrix can
be written as

Y =U,DUT (10)

where U, € CE1LDXP anq 7, € CU2L2)xP

3. 2D MULTIPLE-INVARIANCE ESPRIT

In what follows, for simplicity of notation we assume that K1 L1 >
KoLy > P. The case where K1 L1 < K2 Lo can be handled under
the same framework by transposing the reassembled data matrix
in (2). The signal matrix H; represents the Khatri-Rao product
of two Vandermond matrices, and, hence, it contains multiple in-
variant submatrices. Let Ay and A, , denote the (K1 — k) x P
matrices formed, respectlvley, from the first and the last K1 — k

rows of A; fork =1,..., K1 — 1, that is,
Ay = Tk kAL (11)
Al,k = iKl,kAl (12)

where J i, 1 and J J k, 1, are the matrices formed from the first and
the last K1 — k rows of the Ky x K identity matrix, respectively.
The Vandermonde structure of A; implies that

AQi=A,, for k=1,...,K—1 13)

where Q, = diag{a1,as,...,ap}. Let us define

H.r 2 BioA, ;= (I1, OjKl,k)H =T, .H:1 (14)
H,, = B: 0A, =L 0y ) H1 =T, H:i (15)

==a,k
where I, denotes the Ly x L, identity matrix, T, ok 27 L, ©
J %, and T, ,= 21,0 J k¢, k- Similar to (14) and (15), we
also define the (K — k) x P matrices
Ea,k £ Ta,kUh Ea,k £ Ia’kUl- (16)
As U1 and H 1 span the same signal subspace, there exists a full
rank matrix K such that H = U1 K, and consequently, H, =
E.rKandH, , =E, K, fork=1,...,K1 — 1. Itfollows
from (13) that H, 1, Q¥ = H , ;. and, consequently, that
a kKQ

=E, K, k=1,...Ki—-1 (7

Equation (17) shows the MI structure of the signal subspace. With
respect to the b-axis, the MI equation is expressed as

E,.KQ,=E, K, for 1=1,...,Li—1 (18)
where
E,, 2T, U, E,, £ T,,Us, Ty 2 Jp, 01k, (19)
and
Q, = diag{b1,b2,...,bp}. (20)

Conventional harmonic retrieval techniques estimate the pa-
rameters from (17) and (18) using generalized eigenvalue decom-
position (GEVD) (see [1] for the undamped sinusoid and [4] for
damped sinusoid case) or joint diagonalization techniques [2]. The
main advantage of using the joint diagonalization method or the
GEVD-based approach is that in these techniques the MD param-
eter estimates are obtained jointly and the parameter association
problem does not exist. A major drawback of these approaches,
however, is that the computational cost associated with the use of
the joint diagonalization or simultaneous GEVD algorithms is con-
siderably high (except for the special case of simultaneous GEVD
of two matrices [1, 4]). For joint GEVD of more than two matri-
ces, iterative estimation schemes need to be applied [2], and global
convergence of such schemes can not always be guaranteed, espe-
cially in the case of close eigenvalues. Moreover, joint diagonal-
ization approaches rely only on the fact that the MI equations in
(17) and (18) share a common diagonalization matrix K and ig-
nore the relation that exists between Q¥ (and Q') for different
values of k (and [).

4. ROOTING-BASED APPROACH

To overcome these difficulties in the damped harmonic case, we
incorporate polynomial rooting instead of joint diagonalization to
solve the MI equations. The generalized eigenvalue equation in
(17) implies that the P X P matrices

ElE, , —El\E. ", for k=1,....Ki—1 (@20

drop rank if @ € {a1,...,ap}. A sum of the matrices (21) over
different k yields a matrix polynomial of dimension P x P and
degree K1 — 1 given by

Ki—1
M.(a) = (—a ka k Efkia,kak) (22)

k=

=

for which the following proposition holds.

Proposition P1: If the column-reduced signal matrix H , ; in (15)
is full column rank then the matrix polynomial M o (a) is singular
if a is a true generator, i.e. if a € {a,...,ap} and non-singular
for any other values of a inside or on the unit circle.

Proof: In order to proof P1, let us multiply M, (a) from the
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left and the right with K and K, respectively, to obtain

H -k _k
H!\H,,(I-Q, "))

k
-1 k-1

= [ Z (ﬂfkﬂak Z Qam“m)] (I - Q;la) :
m=1

k=1

LW (a)

Since (I — Q;la) becomes singular only at the true generators, it
is sufficient to show that the residual matrix polynomial W (a) is
non-singular inside or on the unit circle. In what follows, we will
proof that for all |a| < 1 and for all nonzero g € C”*! we have
that Re{g” W (a)g} = g"W(a)g > 0. This is equivalent to
showing that the Hermitian part of W (a) given by

1 Ki—1k—1
H —m _m
=52 > HIH, QM
k=1 m=1
1 Ki—1k—1 u
+ 5 Q;ima*mﬂa,kﬂa,k (23)
k=1 m=1

is positive definite. It is clear that the positive definiteness of
W, (a) inside and on the unit circle implies that W (a) is non-
singular.

To prove that W, (a) is positive definite for |a| < 1, one can
show that

Wh(a
Ki1—2
k=1
K| —2K;—2
(@ a"'Q. " BB Q)"

0

e

1

BB:1Q," '(Q.')"

(]

> (@i

—1k—
n=0

Il
S

_l’_

1=0
K1—2K1n—2k—1k71
+Y0 D> > (A-la)@
k=1 m=k l=0n=0
Ki—1

Ki—1
+Y. Y QI"BIB.QY
k=1 m=k

Since 1 — |a]? > 0 for |a| < 1, we have that W (a) is positive
definite inside and on the unit circle if

TY'QIm"BIBQIQL )"

Ki—1

> Q"BB.Qy =H!\H,,>0. (4
m=1

As H , ; is assumed to be full column rank, (24) always holds true.
Therefore W (a) for |a| < 1, and this completes the proof. W

Similarly, with respect to the b-axis we have the following
Proposition.

Proposition P2: If the column-reduced signal matrix H, , is full
column rank, then the matrix polynomial

Li—1

M) = Y (BB~ ELEwb’) @5
=1

is singular if b is a true generator, i.e. ifb € {bi,...,bp} and
non-singular for any other values of b inside or on the unit circle.

Using Proposition P1 (P2), one can estimate the set {a}; -1
by }5:1) by finding the values of a (b) inside the unit circle for
which M, (a) (M (b)) is singular.

5. PARAMETER ASSOCIATION

In this section, we discuss the parameter association to find the
correct pairs of estimates {(ap,b,)}}~; from the solutions that
were separately obtained from rooting M, (a) and M (b), re-
spectively. From [7] we know that the P smallest (amplitude-wise)
roots of the matrix polynomial M ,(a) = ZKI ~!' Fra® are given
by the P minor eigenvalues of the associated companion matrix

S{M.(a)} £ (26)
0 I 0 0
0 0 I 0
0 o U I

n
FK1 1F0 FK1 1F1 FKlfFKl—Q
where | denotes the matrix pseudoinverse. It can readily be veri-
fied that the partitioned matrices

T
V. = {V?;o,va R V;Z;Kl—?]

- (K — 1)—1 [KT7QQKT7 ..,Qfl_QKT]T o7

T T
Vb 07Vb 1s-- '7Vb,L1—2]

= (Li—1)7! [KT, Q.K",..., Qfl’zKT] " 28
represent the P minor eigenvectors of the companion matrices
S{M ,(a)} and S{M (b)}, respectively. Recall that the matrix
K in (27) and (28) relates the signal matrix H ; with the singular
vectors Uy as H1 = U1 K. Furthermore, @, and @Q, have the
P eigenvalues of S{M ,(a)} and S{M(b)} (i.e., the generator
estimates), respectively, on their main diagonals. Let us define K,
and K as

Ki1-2 L1—2

Ko 3 Vau@lh Ko® 3 ViQp!
=0

k=0
If the diagonal elements of @, and @, have the correct associa-
tion, then K, = K, = K, otherwise K, and K, are column-
wise permutations of each other. To find the correct parameter as-
sociation, we compute K f K, and find the element with the max-
imum magnitude in each particular row of KX K. The row and
column indices of this element show, respectively, which columns
of K, and K, should be paired. Once the correct permutation be-
tween the columns K, and K is found, one can pair the diagonal
entries of @, and Q,, because @, and @, are associated to each
other according to the column permutation of K, and K.
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Fig. 1. RMSE of @, versus SNR.

6. SIMULATION RESULTS AND DISCUSSION

We compare the estimation performance of the proposed root-MI-
ESPRIT algorithm and the MDE technique of [4]. The latter tech-
nique is known to be one of the best subspace algorithms devel-
oped for harmonic retrieval of damped exponentials. We assume
five equi-power 2D damped harmonics whose parameters given in
the table below. These harmonics are sampled over a rectangular
grid with support of K = L = 24. The root-mean-square errors
(RMSESs) of the frequency parameters w; and ws are plotted ver-
sus the SNR in Figs. 1 and 2, respectively. All results are averaged
over 100 independent simulation runs.

(o[l a1p | wip [ 2p | wap |
1 —0.2 0.17 —-0.1 0.17
2 —0.0 0.371 —0.0 0.17
3 —0.05 0.2 —0.02 | 0.257
4 —0.02 | 0.057 | —0.02 0.3
5 —0.01 | 0.067 | —0.02 | 0.317

From these figures, we observe that root-MI-ESPRIT uniformly
outperforms MDE at a comparable computational complexity. Th-
ese performance improvements can be explained by the fact that
in root-MI-ESPRIT not only a single invariance but the full MI
structure of the data is exploited.

7. CONCLUSIONS

A novel 2D harmonic retrieval algorithm has been proposed that
exploits the entire MI structure of the data model. Unlike previous
methods that rely on joint eigendecomposition of multiple ESPRIT
matrices, a different approach is taken here. Instead of searching
for common eigenvectors that simultaneously solve the invariance
equations, the relation between the eigenvalues corresponding to
different invariance equations is exploited. The solutions along
each harmonic axis are separately obtained from the roots of a
matrix polynomial and, in a post-processing step, are associated
(paired) according to their eigenvectors. Our technique for solv-
ing the MI equations is computationally attractive and establishes
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Fig. 2. RMSE of @, versus SNR.

a link between ESPRIT-type algorithms and rooting-based algo-
rithms for damped and undamped harmonic retrieval. The general-
ization of the proposed algorithm to the case of higher dimensions
is straightforward.
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