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ABSTRACT

We develop algorithms for biochemical detection and estima-
tion in arbitrary two-dimensional (2D) environments using in-
tegrated sensor arrays. The development of biochemical sen-
sors techniques has been a subject of considerable research
interest in recent years. In this paper we propose statistical al-
gorithms for automatic monitoring of biochemical agents in a
realistically shaped 2D environments using multi-sensor mea-
surements. We derive models for the concentration distribu-
tion using the diffusion equation and finite element approxi-
mations. Using these results we develop parametric statistical
models and maximum likelihood estimation algorithm to find
the parameters of the biochemical agent. To detect a presence
of the source, we develop a generalized likelihood ratio test.
We demonstrate the applicability of our techniques through
numerical examples. Our results are potentially useful for na-
tional security, environmental engineering, food industry, oil
industry etc.

1. INTRODUCTION

The possibility of an adversarial biochemical attack is cur-
rently considered serious and presents a real danger. Bio-
chemical weapons are inexpensive to produce, yet powerful
enough to potentially harm thousands of people. A necessary
condition in fighting against such an attack is the development
of biochemical sensors which can quickly detect the pres-
ence of toxic agents. The sensor design has been a subject of
enormous interest and various techniques have been recently
proposed (for a detailed list of existing technologies see [1],
[2].) However, early and reliable decision making (to mini-
mize the damage) after the toxins are detected requires addi-
tional information such as the size of the affected region(s),
biochemical spread trends, i.e., direction and speed in which
the toxins are moving, etc. The answer to these questions can
be given only by appropriate data processing (estimation) al-
gorithms including the source localization. Once the attack
has occurred, the source transforms into a biochemical cloud
dispersing through the space and the term “source” can be
misinterpreted. Estimating the location and time at which the
source was introduced into the environment as well as its in-
tensity, enables predicting the dispersion of the toxins in time
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and space, and consequently, taking appropriate countermea-
sures (decontamination).

In our previous work we presented algorithms for chemi-
cal source localization and detection [3]–[7] for various sce-
narios using regular geometries. However, there is an obvious
need for signal processing algorithms which can deal with re-
alistic geometries such as buildings, tunnels, moving sources,
etc. In this paper we present signal processing algorithms
for biochemical detection and estimation in a realistic 2D en-
vironment. We first develop physical models for the trans-
port of the diffused biochemical agents from a point source
in an arbitrarily shaped environment using the diffusion equa-
tion, which is useful to model various propagation phenom-
ena (toxins, bacteria, species, etc.) In many of these applica-
tions estimating the diffusion parameters may be crucial (for
example, propagation trends of toxins or bacteria.) The first
challenge in estimating the unknown parameters from a diffu-
sion model is obtaining a so-called inverse model. We develop
an inverse model by applying a finite element (FE) method in
which the spatial and temporal derivatives are linearized. Us-
ing these results we develop parametric statistical models and
derive signal processing algorithms for the biochemical detec-
tion and estimation. We demonstrate the applicability of our
results through numerical examples. In addition to security,
the proposed algorithms are directly applicable to a variety of
applications, such as detection and localization of oil leakage,
automatic monitoring of air pollution, bio-process monitoring
in food industry, etc.

2. PHYSICAL MODELS

We present the physical models for the concentration distribu-
tion of biochemical agents emitted from a fixed point source.
To simplify the FE meshing, we assume that the problem can
be reduced to a 2D Cartesian space, i.e., we consider the diffu-
sion in the (x, y) plane only. We assume a realistic geometry
consisting of a rectangular domain with multiple subdomains
(of polygonal shapes) being removed from it. Such a scenario
represents the most general constructive solid geometry de-
scription for 2D problems. We then solve the diffusion equa-
tion using an FE method in terms of the biochemical source
location, intensity and environment parameters (geometry and
diffusivity.)
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2.1. The Diffusion Equation

Let c(r, t) denote the biochemical agent concentration at a
location r = (x, y) and time t. The transport of biochemical
agents follows the well-known diffusion equation [8]

∂c(r, t)
∂t

= div(κ∇ · c(r, t)), (1)

where c is the substance concentration in units of kg/m3, and
κ is a diffusivity coefficient in units of m2/s. Observe that in
equation (1) we omit the effects of wind since it is irrelevant
to our FE approach and can be easily included.

To uniquely define the concentration distribution, we also
need to specify the boundary and initial conditions. The most
important issue of the boundary conditions is the permeabil-
ity of the boundaries. In practice, the substance cannot be
totally reflected by the boundary surface. In [7] the authors
demonstrated how to solve one-dimensional equations with
permeable surfaces. For simplicity, in the remainder of the
paper we will assume that all the boundaries are impermeable
i.e.,∇c(r, t) = 0 for r ∈ G where G denotes a boundary.

We assume an instantaneous source located at an arbitrary
location r0. Under this assumption and the above bound-
ary conditions the Green function is uniquely determined. In
complex geometries, we can compute the Green function only
numerically or approximately using some discretization tech-
niques such as finite difference or finite element methods [8].

2.2. Finite Element Approximation

The finite element approximation consists of two steps. First,
we present a geometrically complex domain of the problem
as a collection of geometrically simple subdomains called fi-
nite elements. Then, the concentration distribution is approx-
imated over each finite element by a set of algebraic polyno-
mials.

In our case, the domain of interest is infinite i.e., the bio-
chemical agents disperse in open space. Observe that equa-
tion (1) assumes infinitely fast propagation of biochemical
agents i.e., c(r, 0+) > 0 for |r| � 0. In practice, the disper-
sion of the biochemical agents cannot be infinitely fast since
the source particles have a finite propagation speed. There-
fore, we can reduce our domain to a reasonably large, but
finite, area and impose boundary condition c(r, t) = 0 on the
border of the domain.

As a first step, we perform a finite element discretization.
Let Si, i = 1, . . . , ne denote subdomains with geometrically
regular shapes (triangles). The collection of all subdomains
is called a mesh (see Figure 1). For a particular domain, the
meshing can be done in advance using any of the existing FE
software tools (PDE toolbox MATLAB, Ansoft, FEMLAB,
etc.) To achieve better performance we can use a non-uniform
mesh (different sizes of triangles) and adaptive remeshing in
which the size of the elements is iterated until we reach the
desired approximation error.
We then derive the element equations, i.e., interpolate the con-
centration distribution over the triangles. It can be shown that

Fig. 1. Finite element mesh of the domain after refinement.

a for a particular Si the concentration distribution is

c(i)(r, t) =
3∑

l=1

c
(i)
l (t)ψ(i)

l (r), r ∈ Si (2)

where c
(i)
l (t) denotes the concentration at the lth node of the

element Si, and ψ
(i)
l (r) are linear interpolation functions for

the triangular elements, see [9]. Using the (known) interpo-
lation functions we can compute the spatial derivatives over
single subdomains and apply assembly procedures to com-
pute the spatial derivatives over the whole domain.

The time derivatives can be also approximated using var-
ious finite difference techniques (forward, backward, or cen-
tral.) In addition, similar to the spatial elements we can use
temporal elements and approximate time derivatives using the
FE method. As a result we obtain the well-known FE approx-
imation of the transient problems [9]

C ˙cm(t) + Kcm(t) = f(r0, t), (3)

where K is so called global “stiffness matrix,” C is the “damp-
ing matrix,” f(r0, t) is the load vector, cm(t) is the nodal
vector, and r0 is the location of the source. This terminology
comes from strain-stress analysis in which the FE method has
been historically often used [10]. The global nodal vector
cm(t) represents the concentration distribution at the nodal
points. The stiffness matrix is computed by applying spatial
derivatives and assembling local matrices K(i) correspond-
ing to subdomains Si into the global matrix K. Similarly the
damping matrix is computed by applying time derivatives to
temporal interpolation functions. The load vector f(r0, t) is
computed from the initial conditions and continuous sources.
The details of computing the above matrices and vectors can
be found in [9]. Before solving (3) we need to incorporate
the boundary conditions. The permeability related bound-
ary conditions for a particular element i can be written as
B(i)c(i) = 0 where B(i) is the spatial gradient of the inter-
polation functions (flux) defined over subdomain Si, and c(i)

is the nodal vector for the ithe element. The modified stiffness
matrix K̃ is then given by

K̃ = K + B (4)

where B is assembled from B(i) matrices. It can be shown
that the solution to (3) is then given by

cm(t) = e−K̃tf(r0, 0). (5)
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The c(r, t) can then be interpolated using the nodal vectors
and the appropriate interpolation functions.

3. SOURCE ESTIMATION AND DETECTION

We describe the measurement model and develop the signal
processing algorithms for biochemical detection and estima-
tion.

3.1. Measurement Model

We assume a spatially distributed array of p selective bio-
chemical sensors located at known locations ri, i = 1, . . . , p
taking concentration measurements at times tj , j = 1, . . . q
where p and q denote the number of sensors and time samples,
respectively. The measurement model for a sensor located at
ri and time tj is

yij = c(ri, tj) + eij , (6)

where eij is the measurement noise assumed to be zero-mean
Gaussian uncorrelated in space and time. The model pre-
dicted concentration c(ri, tj) is computed using the FE ap-
proximation from Section 2. For example, assuming that at
time t = 0 a biochemical agent of intensity µ is released at a
location r0 we obtain

c(ri, tj) = µwT
i e−K̃tj f(r0, 0), (7)

where w is the interpolation vector. We can further lump the
measurements in a vector form

y = µAa(r0) + e, a(r0) ≡ f(r0, 0), (8)

where y is a (pq)-dimensional vector whose (q(j − 1) + i)
component is yij and similarly for e. The matrix A is a known
spatial interpolation matrix defined by the FE approximation.
We assume that the time of release can be estimated using the
approach presented in [3] and thus, without loss of generality,
we can assume that the time of release is set to t0 = 0.

3.2. Parameter Estimation

To estimate the unknown parameters θ = [µ, r0, σ
2]T we use

the maximum likelihood (ML) estimator. We first define the
likelihood function

l(y, θ) =
1
σ2

[y − µAa(r0)]
T [y − µAa(r0)]. (9)

Then the ML estimate of the unknown parameters is given by

θ̂ = arg max
θ

[l(y,θ)]. (10)

Solving the above optimization directly would be computa-
tionally expensive since it would require computation of the
concentration distribution at each iteration step. Therefore,
we propose to estimate the source location by searching over
a discrete set of points. Let rm

i , i = 1, . . . , n be the locations

of mesh points and let R = {rm
1 , . . . , rm

n }. We estimate the
parameters using

r̂0 = arg max
r∈R

{
[y − µ̂Aa(r)]T [y − µ̂Aa(r)]

}
,

µ̂ = yT Aa(r̂0)/‖Aa(r̂0)‖2 (11)

Observe that we can compute Aa(r) before the actual de-
tection/estimation and thus significantly reduce the computa-
tional time. The variance estimate is then given by

σ̂2 =
1
pq

[y − µ̂Aa(r0)]
T [y − µ̂Aa(r0)]. (12)

Computing r̂0 is extremely important for predicting the trends
in concentration distribution. For example, in urban environ-
ments, densely populated with buildings, it is very likely that
the biochemical agents can get “trapped” within certain re-
gions. In that case computing the predicted concentration
distribution using r̂0 is an irreplaceable tool for determining
which regions will be affected. In addition, we can use the
predicted concentration distribution to optimally select sen-
sor locations with respect to estimation accuracy.

3.3. Source Detection

The detection of the biochemical agents is a binary decision:
H0 :, only the noise is present, and H1 :, the source is present
as well, i.e. the biochemical agents are being released from
the unknown location r0. We consider the generalized likeli-
hood ratio test (GLRT) which is a commonly used technique
for hypothesis testing [11]. This detector is based on the as-
sumption that the solution (5) approximates the physical pro-
cesses reasonably well.

The GLR test is given by the ratio

GLR =
supµ≥0,σ2>0{l(y,θ)}
supµ=0,σ2>0{l(y, θ)} , (13)

where the numerator (denominator) on the r.h.s. corresponds
to the likelihood function under H1 (H0). The detection de-
cision is then made by comparing the GLR in (13) with a
threshold τ : if GLR > τ accept H1, otherwise H0. The com-
putation of τ requires knowledge of the probability distribu-
tion of GLR under H0. Due to the nonlinear dependence on
r0 this distribution requires computationally expensive Monte
Carlo simulations. Instead we propose to test for the presence
of the source at a priori known locations, i.e., mesh nodes.
We formulate the multiple hypotheses test as (hypothesis H0

remains unchanged)

Hi : y = µAa(ri) + e, i = 1, . . . n.

The problem of the source detection can now be viewed as a
classification into one of several multivariate normal popula-
tions, see [11]. To classify the measurement y we fist com-
pute the random variables

λij =
[
y − µ

2
A (a(ri + rj))

]T [
y − µ

2
A (a(ri + rj))

]

(14)
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Fig. 2. Concentration distribution at t = 600s.
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Fig. 3. Probability of detection vs. number of time samples.

where λij = −λji. As a result we obtain n(n + 1)/2 clas-
sification functions. The detailed classification algorithm and
expressions for performance measures, probabilities of false
alarm Pfa and detection Pd are given in [11].

4. NUMERICAL EXAMPLES

We present numerical examples to demonstrate the applicabil-
ity of the proposed algorithms. We consider rather general 2D
scenario in which the objects have arbitrary shapes (see Fig-
ure 1). We define the domain of interest to be square shaped
with side length of 500m. The diffusivity coefficient is set to
κ = 120m2/s. We assume uniformly spaced grid of sensors
with 10m distance in the x and y directions. The measure-
ments are taken every 10 seconds.We assume a unit source
intensity located at (−5, 0)m with release time t0 = 0s.

In Figure 2 we illustrate the concentration distribution at
t = 600s. It is seen that the biochemical agent is mainly
contained within the four objects and thus our detection time
could be significantly improved by placing the sensors on a
non-uniform grid with most of the sensors being located in
the space between these objects. In Figure 3 we illustrate the
probability of detection (we assume σ = 1×10−6Kg/m3 and
Pfa = 0.05) as a function of the number of time samples for
both uniform and non-uniform grid. In the non-uniform case
we placed 10% of the sensors outside of the contaminated
area while other 90% are uniformly placed within the area.

5. CONCLUSIONS

We addressed the problem of detecting and estimating bio-
chemical agents in a realistic two-dimensional environments
using sensor array measurements. To model the biochemical
dispersion we considered 2D diffusion in a domain consisting
of an arbitrary 2D constructive solid geometry description.
This approach can be easily extended to various scenarios
such as urban environment consisting of buildings, complex
tunnel structures, etc. We assumed a fixed point source and
derived the physical model by solving the diffusion equation
using an FE approximation. Using adaptive refinement proce-
dures, we constructed the FE mesh and linearized the spatial
and temporal derivatives in the diffusion equation. We used
the maximum likelihood method to estimate the unknown pa-
rameters and the generalized likelihood ratio test to detect
the presence of the biochemical agents. Numerical examples
were used to illustrate the applicability of the proposed algo-
rithms.

Future research will extend these techniques to 3D sce-
narios. We will investigate the possibility of incorporating
finite particle speed effects. We will also address the issue
of computational complexity and develop sub-optimal algo-
rithms using mesh nodes as potential source locations.
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