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ABSTRACT

Linear Mixtures of independent random variables (the
so-called sources) are sometimes referred to as Under-
Determined Mixtures (UDM) when the number of sources
exceeds the dimension of the observation space. The algo-
rithms proposed are able to identify algebraically a UDM
using the second characteristic function of the observations.
With only two sensors, the first algorithm only needs a SVD.
With a larger number of sensors, the second algorithm ex-
ecutes an ALS. The joint use of statistics of different orders
is possible, and a LS solution can be computed.

1. INTRODUCTION

This paper is devoted to Underdetermined Linear Mixtures
(UDM), that is, mixtures of independent random sources
where the number of sources, N , always exceeds the num-
ber of sensors, P . In other words, underdetermined mix-
tures do not enjoy sparsity properties such as disjoint source
spectra, or sources non permanently present (this property
is often exploited in Speech applications [15]).

Moreover, we are only interested in Blind Identifica-
tion, and not in Source Extraction. These two problems are
closely related when the number of sources does not exceed
the number of sensors. In fact, the linear mixture can then
be linearly inverted, and looking for its inverse is an equiva-
lent problem (see [12] and earlier references therein). Tech-
niques that have been utilized in this framework, such as
second order pre-whitening, or deflation, are not applicable
for UDM.

Identifiability of linear mixtures received on a single
sensor requires source distributions to have an indecompos-
able characteristic function (c.f.) [17] [13]; for instance in
digital communications, BPSK sources are indecomposable
but QPSK are not. This condition can be deflated for un-
derdetermined mixtures received on 2 sensors [19] [6]. In
contrast, for over-determined mixtures, the only pathologi-
cal distributions are Gaussian [10] [7] [13]. In the sequel,
it is assumed that an under-determined mixture is available
on more than one sensor, viz 1 < P < N . In addition, it is
not assumed that spectral or multi-spectral differences can
be exploited as in [11] for instance, and the time dimension
is merely ignored.

Blind source extraction from underdetermined mixtures
is a difficult problem since these mixtures cannot be linearly

inverted [4]. On the other hand, Blind Identification (BI) of
the mixture matrix can be performed without extracting the
sources (at least in a first stage), as in [3] [4] [8] [18] [1].
More precisely, the methods proposed in [3] [4] [8] [11]
only use the data Fourth Order statistics, whereas in [18] or
[6], the information contained in the second c.f. of obser-
vations is exploited. We extend this kind of approach by
using additional equations, which makes the solution more
stable. Contrary to cumulant based approaches such as [1]
or [4], for a given number of sensors, the number of sources
is theoretically not limited, which constitutes the main mo-
tivation in using the c.f. This advantage has not been fully
exploited in [20], where the mixture is assumed square.

2. ASSUMPTIONS AND NOTATION

In accordance with the remarks made in introduction, we
assume the observation model below:

x = A s + w (1)

where array variables are distinguished from scalars by bold
faces, x and s are random vectors of size P and N respec-
tively, A is a P × N full rank matrix, and w accounts for
modeling errors and additive noise. From now on, its pre-
sence is just ignored in the remaining, except when running
computer experiments. The entries sn of vector s are as-
sumed to be non Gaussian and statistically independent.

For simplicity, we shall restrict our attention in this pa-
per to real variables and mixture. As pointed out in [6], the
immersion of the complex framework in a real framework
of larger size introduces some additional constraints, which
make the problem more difficult, but at the same time al-
low a better stability of the solution. Most of the reasoning
developed in this paper applies to the complex case, up to
some complication in the notation.

We also assume the following hypotheses:

H1 the columns of A are pairwise linearly independent.
H2 source distributions are unknown and non Gaussian
H3 the number N of sources is known
H4 the moments of the sources are unknown, but finite

up to some order larger than N

Under H1, H2, and H3, A can be shown to be essentially
unique [13, pp.311-313].
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Two practical algorithms are subsequently described.
The first is a significant improvement of the approach de-
scribed in [18] and [6], and the second is able to solve the
derivative matching problem for N > 2 with the help of
an ALS algorithm. Both are based on the core functional
equation below, which is a direct consequence of source in-
dependence:

Ψx(u) =

N∑
n=1

ψn(

P∑
p=1

Apnup) (2)

where Ψx(u) denotes the second c.f. of x defined as
Ψx(u) = log E{exp(uTx)}, and where ψn(v) denotes the
second c.f. of source sn: ψn(v) = log E{exp(vsn)}. This
core equation can be used in an open neighborhood Ω of the
origin, where Ψx does not vanish.

3. ALGORITHM ALGECAF: AN ALGEBRAIC
SOLUTION

It is easy to verify that any two derivatives of (2) can be
combined in order to cancel the nth term of the sum. More
precisely, for any triplet of indices, define the differential
operator:

Dn,i,j
def
= Ain

∂Ψx

∂uj

− Ajn

∂Ψx

∂ui

In other words, Dn,i,jΨ(u) does not depend on ψn, for any
values of (i, j). Thus, by applying such an operator N times
for different n’s and for arbitrary pairs (in, jn), one eventu-
ally gets zero. In order to be able to estimate A, it is inter-
esting to fix the pair (i, j), which leads to:

{ N∏
n=1

Dn,i,j

}
ψx(u) =

N∑
k=0

qk[i, j]
∂Nψx(u)

∂uN−k
j ∂uk

i

= 0, ∀u ∈ Ω

(3)
where qk[i, j] are known functions of the (yet unknown) en-
tries of A. In order to obtain the exact relation between vec-
tor q[i, j] and rows i and j of A, it suffices to plug equation
(2) into (3), which yields:

N∑
n=1

[
N∑

k=0

qk[i, j]AN−k
jn Ak

in

]
ψ(N)

n (
∑

p

Apnup) = 0 (4)

where ψ
(N)
n denotes the N th derivative of ψn. Since this

holds true for any u ∈ Ω, one can deduce that

N∑
k=0

qk[i, j]AN−k
jn Ak

in, ∀n (5)

This shows that the N ratios Ain/Ajn can be obtained as
the N roots in the projective space (i.e.including infinity) of
a polynomial of degree N , once q has been obtained.

Now, imposing (3) to be satisfied on a grid of K values
{u[1], . . . ,u[K]} ∈ Ω, one can build the over-determined

linear system H[N ] q = 0, where H [N ] is the matrix of
N th order derivatives given below:⎛

⎜⎜⎜⎜⎜⎜⎝

∂N ψ
x

(u[1])

∂uN
j

∂N ψ
x

(u[1])

∂u
N−1

j
∂ui

. . .
∂N ψ

x
(u[1])

∂uN
i

∂N ψ
x

(u[2])

∂uN
j

∂N ψ
x

(u[2])

∂u
N−1

j
∂ui

. . .
∂N ψ

x
(u[2])

∂uN
i

...
...

...
...

∂N ψ
x

(u[K])

∂uN
j

∂N ψ
x

(u[K])

∂u
N−1

j ∂ui

. . .
∂N ψ

x
(u[K])

∂uN
i

⎞
⎟⎟⎟⎟⎟⎟⎠

Because A can be estimated only up to a scale factor,
it is entirely identified by this procedure if it contains only
two rows (P = 2). If there are more than 2 sensors, this al-
gorithm can be adapted to the price of an important increase
in complexity, as shown in [6].

Our contribution here is different: we show that one can
improve on the stability of this solution by adding extrane-
ous equations. In fact, expression (3) is still null if we take
further derivatives:

∂

∂u�

N∑
k=0

qk[i, j]
∂Nψx(u)

∂uN−k
j ∂uk

i

= 0, ∀u ∈ Ω (6)

For instance, for u = 0, P = 2, and N = 3, this yields the
two fourth-order cumulant equations used in [4].

An even more interesting results is that (3) and (6) in-
volve the same unknown qk, so that they can be combined
to build a single larger over-determined system. Indeed, de-
note H[N +1, 0] and H [N +1, 1] the two K ×N matrices
built from (6) when � ∈ {i, j}. Then q[i, j] satisfies the
following linear system:[

H[N ]
H [N + 1, 0]
H [N + 1, 1]

]
· q[i, j] = 0

Example: To make it clear, in order to identify a 2 × 3
mixture, one wishes to estimate a vector q of dimension
N + 1 = 4. To do this, one can either build a linear sys-
tem with 3rd order derivatives taken at (at least) 3 different
points of Ω, or the two types of 4th order derivatives taken
at (at least) 2 different points of Ω. But one can also build
a system combining both, including then both 3rd and 4th
order derivatives, possibly taken at a single point of Ω (the
linear system needs in fact at least N = 3 rows in order to
have a null space of dimension at most 1).

4. ALGORITHM ALESCAF: AN ALTERNATE LS
SOLUTION

As already pointed out, the ALGECAF algorithm is very at-
tractive for the Blind Identification of 2 × N mixtures, but
more complicated to implement for P > 2 [6]. Therefore,
there is a great interest in looking for other ways of exploit-
ing the c.f. From (2), one can easily obtain that

∂3Ψx(u)

∂ui∂uj∂up

=

N∑
n=1

AinAjnApn ψ(3)
n (

∑
q

Aqnuq) (7)
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Again, take this equation on K points u[k]∈Ω. Then, stor-
ing the left hand side of (7) in a family of symmetric matri-
ces Tij [p, k], and denoting Dkn = ψ

(3)
n (

∑
q Aqnuq[k]), (7)

can be arranged in compact form as

T [p, k] = A Diag{A(p, :)}Diag{D(k, :)}AT, (8)

with 1 ≤ p ≤ P, 1 ≤ k ≤ K , and where Diag{v} de-
notes the diagonal matrix whose entries are those of vector
v. Expression (8) is a four way PARAFAC model and can be
solved using an ALS algorithm described in the appendix
7.1. This procedure constitutes algorithm ALESCAF (Al-
ternate Least Squares Identification based on the Characte-
ristic Function) and is able to compute A and D from sym-
metric matrices T [p, k] (the implicit dependence of D on
A is ignored). Uniqueness of A is achieved as Kruskal’s
inequality is verified [14]:

3rk(A) + rk(D) ≥ 2 rank{T } + 3 (9)

where rk(A) is the Kruskal rank [14] of A. Results are ex-
pected to be better when increasing the order of the statistics
as we move away from the Parafac limit, but this need to be
verified by simulations.
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Fig. 1: Gap between estimated and actual mixing matrix
for (P, N) = (2, 6), with algorithms ALGECAF with use
of 6th and 7th derivatives, and for (P, N) = (2, 3) with
use of 3rd and 4th derivatives. Average gap values over 21
independent trials are plotted.

5. COMPUTER RESULTS

Estimates of matrices H [·] are computed in the follo-
wing manner. First, all derivatives of Ψx(u) of required
order are formally expressed as a function of moments
µ(n, u[k]) = E{xnex

T
u[k]}. Then sample moments

µ̂(n, u[k]) = 1
M

∑M

m=1 x[m]nex[m]Tu[k]} are computed,
yielding eventually estimates of entries of H (here xn

stands for Πpx
np

p ). The number of sensors is taken to be
P = 2, and the number of sources ranges from N = 3 to
N = 6. Sources are BPSK, that is, they take their values in
{−1, 1} with equal probabilities.

Two types of results are reported for ALGECAF. First,
the influence of the noise alone is analyzed. For this pur-
pose, a block of data of length 2N is generated with ex-
actly all possible combinations of {−1, 1}; in this manner,
sources are always seen as perfectly independent. Indepen-
dent realizations of a Gaussian noise are added, with various
noise level (SNR). Gaps averaged over 21 trials are reported
in figure 1 with the label “infinite sample size”. Second,
other experiments are reported where source blocks are also
randomly generated; therefore sources are seen as statisti-
cally independent only for large block lengths. As reported
with the curves labeled “1000 samples” in figure 1, one can
observe a plateau for high SNR’s.
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Fig. 2: Gap between estimated and actual mixing matrix for
(P, N) = (2, 3), with algorithm ALESCAF. Average gap
values over 21 independent trials are plotted.

In figure 2 we report the influence of noise on
ALESCAF algorithm applied on ”infinite” blocks of data.
We start with SNR=60dB, check for convergence, and use
the value of the corresponding loading matrices A and D
to initialize the next ALESCAF algorithm for SNR=50dB
and so on. By doing so, one expects to access ultimate
performances, i.e. in actual situations, performances will be
poorer.

6. CONCLUDING REMARKS

Our contribution was three-fold: (i) we have demonstrated
that it was possible to derive an algebraic solution to the
2×N Blind Identification problem by simultaneously using
derivatives of different orders, and that it improves the sta-
bility of the solution, (ii) we have made the connection with
cumulant-based approaches, and proved that improvement
(i) also applies to the joint use of cumulants of different or-
ders, larger than or equal to N ; (iii) we showed that an ALS
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algorithm of PARAFAC type could be utilized to identify a
P × N mixture, and that only third-order derivatives of the
c.f. are necessary, although higher orders can also be used.

Future works include: (a) the proof of identifiability
when using only derivatives of given orders of the c.f.;
(b) improvement of the convergence of ALS algorithms,
slow for topological reasons (likely because of a lack of
closure [5]); (c) in order to account for a possibly differ-
ent variance in estimates of moments of different orders, a
weighting can be rather easily introduced, and may improve
on asymptotic performance; (d) take into account part of the
symmetry in the Parafac algorithm, for instance as outlined
in appendix 7.2.

7. APPENDIX

7.1 Minimizing the gap between both sides of (8) consists
of minimizing

Υ =
∑
p,k

||T [p, k]−A Diag{C(p, :)}Diag{D(k, :)}BT||2

(10)
with respect to matrices A, B, C and D, if the symmetry
constraint is relaxed. The set of matrices T [p, k] defined in
(8) can be stored in a tensor Tijpk . Then, this problem can
be solved with the help of the Harshman’s PARAFAC algo-
rithm [14] [16], originally developed for 3rd order tensors,
and improved by Bro [2].
7.2 Define the family of diagonal matrices Λ[p, k] =
Diag{A(p, :)}Diag{D(k, :)}. Ignoring the dependence of
Λ on A, one can try to impose the symmetry A = B in
(10); but things are more complicated because the optimiza-
tion criterion (10) is not quadratic anymore in the unknown
rectangular matrix B. Let λ[k] = diagΛ[k]. Two writings
are derived in order to obtain stationary values with respect
to the rectangular matrix and to the diagonal one:

Υ =
∑

k

||T [k] − BΛ[k]B†||2 (11)

and, with t[k] = vecT [k] and an appropriate definition of
B:

Υ =
∑

k

||t[k] − Bλ[k]||2 (12)

Some manipulations would show that the stationary values
λ[k] are given by

λ[k] = {B† B}−1B† t[k] (13)

Last, the stationary value of each column b[�] of matrix B
is the dominant eigenvector of the Hermitian matrix

P [�] =
1

2

∑
k

λ�[k]{T̃ [k; �]† + T̃ [k; �]} (14)

where T̃ [k; �]
def
= T [k]−

∑
n�=� λn[k]b[n]b[n]†. A LS solu-

tion is computed when matrices involved are singular. This
turns out to have similarities with a work of Yeredor [21],
developed for diagonalizing a set of square matrices by an
invertible transform, i.e. applicable only for rank{T} ≤ P ;
however, the algorithm theoretically also works for square
tensors of rank larger than P .
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