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ABSTRACT

We present a general framework for multichannel exact de-
convolution with multivariate finite impulse response (FIR)
convolution and deconvolution filters using algebraic geom-
etry. Previous work formulates the problem of multichannel
FIR deconvolution into that of the left inverse of a convolu-
tion matrix which is solved by linear algebra. However, this
approach requires the prior information of the support of
deconvolution filters. Using algebraic geometry, we find a
necessary and sufficient existence condition of FIR decon-
volution filters and propose a simple algorithm based on the
Gröbner basis to compute deconvolution filters. This com-
putation algorithm obtains deconvolution filters with either
minimal order or minimum number of nonzero coefficients,
and no prior information of the support is required. Simula-
tion results show that due to the smaller size of deconvolu-
tion filters our approach achieves better results than the liner
algebra approach under the impulsive noise environment.

1. INTRODUCTION

Over the last decade, the theory and applications of multi-
channel deconvolution have grown rapidly, such as channel
equalization for multiple antennas [1], multichannel image
deconvolution [2], and polarimetric calibration of radars [3].
In these applications, the original data is filtered by multiple
finite impulse response (FIR) filters with possible additive
noise, and the goal of the multichannel deconvolution is to
reconstruct the original data given the multiple filtered data
as shown in Fig. 1.

Harikumar and Bresler considered the multichannel two-
variate FIR exact deconvolution problem where the decon-
volution filters are FIR and the reconstruction data equals to
the original data when there is no additive noise [2]. Such
FIR exact deconvolution is more computationally efficient
than traditional least-square solutions. Harikumar and Bresler
proposed a linear algebra algorithm to compute the decon-
volution filters, which requires the prior information on the
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Fig. 1. An N -channel deconvolution. Original data X is
filtered by N convolution filters {H1, . . . , HN} with pos-
sible additive noise. Reconstruction data X̂ is the linear
combination of the deconvolution by N deconvolution fil-
ters {G1, . . . , GN} from N outputs {Y1, . . . , YN}.

support size of deconvolution filters. In general, the re-
sulting filters do not have minimum support. Rajagopal
and Potter applied the Gröbner basis to compute equalizers
without the prior knowledge of the support of deconvolu-
tion filters [3]. The filters they considered are polynomial or
causal filters, while the filters we consider here are general
FIR filters. Such filters have been used in many deconvolu-
tion applications, for example, image deconvolution.

In this work, we address the multichannel multivariate
FIR exact deconvolution problem using algebraic geome-
try [4]. We derive a sufficient and necessary condition for
the existence of FIR deconvolution filters and propose a
simple algorithm based on the Gröbner basis to compute
the deconvolution filters without the prior knowledge of the
support of the filters.

The rest of the paper is organized as follows. In Sec-
tion 2, we briefly introduce the system model and the Gröbner
basis theory. We propose the existence condition of decon-
volution filters in Section 3 and a computation algorithm
based on the Gröbner basis in Section 4. The simulation
results under the impulsive noise environment are given in
Section 5. Due to the space limitation, we only state the
results here and refer readers to [5] for proofs.
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2. PRELIMINARIES

We start with notations. Throughout the paper, we will
always refer to M as the number of variables, and N as
the number of channels. We denote sets, vectors, or ma-
trices by boldface letters, for example, z stands for an M -
dimensional complex variable z = [z1, . . . , zM ]T , and rais-
ing z to an M -dimensional integer vector k = [k1, . . . , kM ]T

yields z
k =

∏M

i=1
zki

i . We denote the z-transform of sig-
nals or filters by uppercase letters, and occasionally we will
suppress the variable z for simplicity.

Exact deconvolution requires that the reconstruction data
X̂ equals to the original data X in Fig. 1 when there are no
noises. In the z-domain, the exact deconvolution condition
is equivalent to

N∑
i=1

Hi(z)Gi(z) = 1. (1)

In the multichannel exact deconvolution problem, the con-
volution filters {Hi} are given, and the goal is to find the
deconvolution filters {Gi} satisfying (1). For the univariate
polynomial case, (1) has a solution if the common great-
est divisor of {H1, . . . , HN} is 1 and we can use the uni-
variate division algorithm to find a solution [6, 7]. Unfor-
tunately, these algorithms fail for multivariate polynomials.
One important reason is that the remainder of the multivari-
ate division algorithm depends on the order of Hi, while the
remainder in the univariate division algorithm is uniquely
determined.

Gröbner basis extends the univariate polynomial theory
and algorithms such as the common greatest divisor and
the division algorithm to multivariate polynomials [8, 9]. A
Gröbner basis is a set of polynomials such that given any
polynomial its remainder related to this set is uniquely de-
termined, regardless of the order of the polynomials. More-
over, given a polynomial set {H1, . . . , HN}, there exists a
unique reduced Gröbner basis {B1, . . . , Bn} and an n×N

(polynomial) transform matrix W such that,

Bi =

N∑
j=1

Wi,jHj , for 1 ≤ i ≤ n, (2)

where Wi,j is the element of W at (i, j). Note that the
size of the reduced Gröbner basis may differ from the size
of the given polynomial set. The reduced Gröbner basis
and the associated transform matrix can be computed by the
Buchberger’s algorithm, which has been implemented by
many computer algebra systems such as Macaulay2.

3. INVERTIBLE CONDITIONS

In the multichannel FIR exact deconvolution problem, the
convolution filters {H1, . . . , HN} are given FIR filters, and

our task is to find a set of FIR deconvolution filters
{G1, . . . , GN} satisfying (1). However, the set of FIR de-
convolution filters does not always exist.

Definition 1 A set of FIR filters {H1, . . . , HN} is said to be
FIR invertible if there exists a set of FIR filters {G1, . . . , GN}
satisfying the perfect reconstruction condition (1).

Algebraic geometry and Gröbner basis are powerful tools
for multivariate polynomials. To apply these tools, we need
to convert the FIR problem into a polynomial problem. One
key observation is that we can convert any FIR filter into
a polynomial by multiplying it with a monomial with high
enough degree (equivalent to shifting the origin so that all
filters are causal). In this way, we convert both {Hi} and
{Gi} into polynomials by multiplying both sides of (1) with
a monomial. Therefore, the exact deconvolution condition
for the FIR filters in (1) is equivalent to a condition for the
polynomial filters:

N∑
i=1

Hi(z)Gi(z) = z
m, for some integer vector m.

(3)
Without loss of generality, we assume that the convolution
filters {H1, . . . , HN} are polynomials in this section. Now
we apply algebraic geometry to (3) and obtain an existence
condition.

Theorem 1 ([5]) Suppose {H1(z),H2(z), . . . , HN (z)} is
a set of multivariate polynomials. Then it is FIR invertible if
and only if every complex solution of the system of equations

{H1(z) = 0, . . . , HN (z) = 0}

is weak-zero, that is, at least one of its element is zero.

Theorem 1 gives a sufficient and necessary condition for
the FIR exact deconvolution. However, this theorem does
not provide a practical criterion since it is generally diffi-
cult to find all complex solutions for a system of polynomial
equations. Using the Gröbner basis, we obtain a computa-
tional test criterion for the existence of FIR deconvolution
filters.

Theorem 2 ([5]) Suppose {H1(z), . . . , HN (z)} is a set of
multivariate polynomials. Then it is FIR invertible if and
only if the reduced Gröbner basis of {H1(z), . . . , HN (z), 1−
z1 · · · zM+1} is {1}, where z = [z1, . . . , zM ] and zM+1 is
a new variable.

The key technique in this theorem is the introduction of
a new variable zM+1 that maps the FIR deconvolution into
a polynomial one. To illustrate Theorem 1 and Theorem 2,
we give an example.
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Example 1 Let H1(z1, z2) = z1+z2
2−1 and H2(z1, z2) =

z1 + z2 − 1. They have two common zeros, z = (1, 0)
and z = (0, 1), but both of them are weak-zero. By The-
orem 1, the set {H1,H2} is FIR invertible. The reduced
Gröbner basis of {H1,H2, 1 − z1z2z3} is {1}. By Theo-
rem 2, {H1,H2} is FIR invertible.

4. COMPUTING DECONVOLUTION FILTERS

In this section, we present an algorithm to test the invertibil-
ity and compute a set of FIR deconvolution filters. We also
present the characterization of all sets of FIR deconvolution
filters.

By Theorem 2, if the set of convolution filters is FIR
invertible, the reduced Gröbner basis of {H1, . . . , HN , 1 −
z1 · · · zM+1} is {1}. Suppose the corresponding transform
matrix is (W1, . . . , WN+1). Then (2) becomes

N∑
i=1

Hi(z)Wi(z, zM+1)+(1−
M+1∏
j=1

zj)WN+1(z, zM+1) = 1.

(4)
Set zM+1 = z−1

1 · · · z−1

M , and then (4) becomes

N∑
i=1

Hi(z)Wi(z,

M∏
j=1

z−1

j ) = 1,

which implies {W1(z, z−1

1 · · · z−1

M ), . . . , WN (z, z−1

1 · · · z−1

M )}
is a set of FIR deconvolution filters.

Algorithm 1 ([5]) The test and computational algorithm
for a set of FIR deconvolution filters is given as follows.

Input: a set of FIR convolution filters {H1, . . . , HN}.
Output: a set of FIR deconvolution filters, if it exists.

1. Multiply {Hi} by a common monomial zm0 such that
{Hi} are polynomials.

2. Use the Buchberger’s algorithm to compute the re-
duced Gröbner basis of {H1, . . . , HN , 1−z1 · · · zM+1}
and the associated transform matrix W .

3. If the reduced Gröbner basis is {1}, Simplify

G = {W1(z, z−1

1 · · · z−1

M ), . . . , WN (z, z−1

1 · · · z−1

M )}

and output z
−m0G.

Otherwise, there is no solution.

Algorithm 1 generates a set of FIR deconvolution filters
without the prior knowledge of the size of the deconvolu-
tion filters. Moreover, by changing the order of polynomi-
als in {H1, . . . , HN , 1 − z1 · · · zM+1}, the deconvolution
filters can be computed with either minimal order or min-
imum number of coefficients. To illustrate this algorithm,
we give an example.

Example 2 Consider the polynomial set {H1,H2} in Ex-
ample 1. By the Buchberger’s algorithm, the reduced Gröbner
basis of {H1,H2, 1−z1z2z3} is {1} and the transform ma-
trix is (−z3, z3 + z2z3, 1). By Algorithm 1, we obtain a set
of deconvolution filters {−z−1

1 z−1

2 , z−1

1 z−1

2 + z−1

1 }. It can
be verified that this set has minimum number of coefficients.

The set of FIR deconvolution filters for a given set of
FIR convolution filters is not unique. In the following, we
characterize all sets of FIR deconvolution filters using one
set of FIR deconvolution filters.

Using the matrix format, we express (3) as

H
T (z)G(z) = 1, (5)

where H(z) and G(z) are N×1 vectors of FIR convolution
filters and deconvolution filters respectively.

Theorem 3 ([5]) Suppose H(z) is a given vector of FIR
convolution filters and Gp(z) is a vector of FIR deconvolu-
tion filters satisfying (5). Then a vector of FIR deconvolu-
tion filters G(z) also satisfies (5) if and only if G(z) can
be written as

G(z) = Gp(z) +
(
I − Gp(z)HT (z)

)
S(z),

where I is the N ×N identity matrix and S(z) is an N × 1
FIR vector.

5. SIMULATIONS

We illustrate the simulation results under the impulsive noise
environment, which is common in many deconvolution ap-
plications such as equalization. The signal-to-noise ratio
(SNR) is defined as

SNR = 10 log10(

∑p

i=1
‖Yi‖

2

σ2
),

The impulsive noise N is defined as

N =

{
0, with probability (1 − α),

∼ N (0, σ2), with probability α,

where α is the occurrence probability of the impulsive noise.
In the simulations, we choose the SNR to be −30 dB and α

to be 0.0001. The original image and the noisy convolution
outputs are shown in Fig. 2(a) and Fig. 2(b)-(d).

The three convolution filters are given as

H1 =

⎛
⎜⎜⎜⎜⎝

4 0 −20 0 16
0 20 20 −32 −32
−5 −10 19 48 24
0 −8 −24 −24 −8
1 4 6 4 1

⎞
⎟⎟⎟⎟⎠
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Fig. 2. (a) Original image of size 256 × 256. (b)-(d) Con-
volution outputs imposed by additive impulsive Gaussian
noises (SNR=−30 dB, α = 0.0001).

and

H2 =

⎛
⎝3 −8 4

4 0 −4
1 2 1

⎞
⎠ , H2 =

⎛
⎝−3 −4 4

2 −2 −4
1 2 1

⎞
⎠ .

We apply Algorithm 1 and compute a set of deconvolu-
tion filters, which are exact solutions given as

G1 =
1

40
, G2 =

⎛
⎜⎜⎝

3

20

1

10

3

20

1

10

− 1

20
− 1

5
− 3

10
− 3

20
3

80

3

20

3

16

3

40

− 1

80
− 3

80
− 3

80
− 1

80

⎞
⎟⎟⎠ ,

and

G3 =

⎛
⎜⎜⎝
− 3

20
− 1

10
− 3

20
− 1

10
1

20

1

5

3

10

3

20

− 3

80
− 3

20
− 3

16
− 3

40
1

80

3

80

3

80

1

80

⎞
⎟⎟⎠ .

The first deconvolution filter is just a scalar. The size of rest
two filters is 4 × 4. For comparison, we compute the size
of deconvolution filters using the estimates in [2], which is
4×8. Then we compute a set of deconvolution filters of size
4×8 by the linear algebra approach, which gives numerical
solutions. Hence, Algorithm 1 obtains deconvolution filters
with smaller size. Actually, it can be proved that the ob-
tained filters have minimum number of coefficients.

Then we use two sets of deconvolution filters to recon-
struct the original image. The reconstruction images by the
linear algebra approach is shown in Fig. 3(a) and our pro-
posed approach in Fig. 3(b). Since both sets of deconvolu-
tion filters are FIR, the impulsive noise have been isolated
from propagation in both reconstruction images. However,
the impulsive noises in Fig. 3(b) are smaller than those in
Fig. 3(a). The reason is that the deconvolution filters ob-
tained by our proposed approach have smaller supports than
those obtained by the linear algebra approach.

(a) (b)

Fig. 3. Reconstruction images by the FIR deconvolution
filters obtained by: (a) Linear algebra approach; (b) Our
proposed approach.
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