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ABSTRACT
We consider the problem of source number estimation in the

presence of unknown spatially nonuniform noise. A sequential hy-

pothesis test is formulated based on Gerschgorin’s theorem. As no

assumption is made on the distribution of the noise or the signals,

the bootstrap is used to estimate the distribution of the proposed

test statistics. Performance of the new detector is assessed through

simulations and its advantage is illustrated in different scenarios

against a Gerschgorin-based information criterion.

1. INTRODUCTION

Model-order selection techniques apply to array signal processing

for the purpose of determining the number of signals impinging

on a sensor array [1, 2]. These methods range from hypothesis

testing [3]-[5] to information theoretic criteria [6, 7]. When the

noise powers are different from one sensor to another, most clas-

sical detectors fail to correctly estimate the number of sources and

few dedicated detectors are available.

A hypothesis test was proposed in [4] for the case of spatially

correlated noise under the assumption that the noise covariance

matrix has a band structure. This approach can be extended to

nonuniform noise but can use half of the available sensors at most,

thus making it a very restrictive approach. In [7], an information

criterion was proposed based on Gerschgorin radii to tackle spatial

nonuniformity. However, similarly to the classical approaches, the

method fails as it incorporates the erroneously ordered eigenvalues

of the data covariance matrix.

In [8], a more appropriate derivation was carried-out based on

Gerschgorin’s theorem, where the contribution of the unordered

eigenvalues was suppressed. The resulting Log-Likelihood func-

tion demonstrates robustness to the variation of the powers of the

noise. When combined to appropriately defined penalty functions,

information theoretic criteria can be obtained for both the nonuni-

form and the special uniform noise cases. The resulting functions

retain the asymptotic properties of the classical detectors, and ver-

sions for small samples were also suggested [9].

The main drawback of Gerschgorin-based information criteria

is that the goodness-of-fit term is specifically derived for Gaus-

sian signals. If the assumption of Gaussianity is not verified, the

behavior of the aforementioned detectors is expected to degrade

significantly, especially for relatively low Signal to Noise Ratios

(SNR) and small sample sizes.

In what follows, we propose an alternative detection scheme

based on a sequential hypothesis test where no assumption on the
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distribution of the data is made. The proposed test statistics are

based on the discriminating property of the Gerschgorin radii [8]

and their distribution under the null is estimated using the Boot-

strap. Thus, the newmethod deals with deviations from both Gaus-

sianity and asymptotic conditions.

2. DATA MODEL

Consider p narrowband signals impinging on anM -element array.
The number of sources p is unknown and is to be estimated. It is
assumed that p < M . The sources are assumed to be coplanar and
located in the far field.

The received signal vector at instant t can be modeled as

x(t) = As(t) + n(t), t = 1, . . . , L (1)

where A is the (M × p)-dimensional array steering matrix rep-
resenting the array spatial response to the p wavefronts, s(t) is
the p-dimensional vector of the source signals and n(t) is theM -
dimensional vector of sensor noise.

The additive noise n(t) is assumed to be a spatially and tem-
porally white process with an unknown diagonal covariance matrix

Q, i.e.,

Q = E
{
n(t)nH(t)

}
= diag {q} (2)

where (.)H denotes Hermitian transpose and E(.) expectation. Spa-
tial non-uniformity of the noise is modeled by different powers

through the sensors, such that

q = [σ2
1 , σ2

2 , . . . , σ2
M ]T . (3)

The source signals and the noise are assumed to be uncor-

related and their respective distributions are unknown. Conse-

quently, the array covariance matrix is given by

R = E
{
x(t)xH(t)

}
= ARsA

H + Q (4)

where Rs = E
{
s(t)sH(t)

}
is the source signal covariance ma-

trix.

3. SOURCE NUMBER DETECTION

3.1. Covariance Matrix Transformation

As the noise powers are different from one sensor to another, the

effect of noise due to the individual sensors is alleviated by neu-

tralizing one arbitrary element from the array [7, 8]. If, say, the
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Fig. 1. Histogram of the test statistics using the Bootstrap (Empir-
ical probability vs value of the test statistics).

contribution of the k-th array element is suppressed, a unitary
transformation matrix U can be defined such that, when applied
to the original covariance matrix R, the following matrix is ob-
tained [7, 8]

R = UHRU

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 . . . 0 c∗1 0 . . . 0
...
. . .

...
...

...
...

...

0 . . . λk−1 c∗k−1 0 . . . 0
c1 . . . ck−1 r(k,k) ck . . . cM−1

0 . . . 0 c∗k λk . . . 0
...

...
...

...
...
. . .

...

0 . . . 0 c∗M−1 0 . . . λM−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

where (.)∗ stands for complex conjugate, λm,,m = 1, . . . , M−1,
are the eigenvalues of the (M − 1)-dimensional reduced covari-
ance matrix Rk, and r(k,k) is the element of R of index (k, k),
corresponding to the k-th suppressed array element.
The elements cm,m = 1, . . . , M −1, in (5) are the projection

of the k-th column of R onto eigenvector em, corresponding to

eigenvalue λm. Their magnitudes ρm = |cm| are the Gerschgorin
radii of matrixR [7, 8].
Based on the information contained in the elements ρm,m =

1, . . . , M − 1, it is possible to separate the noise and signal sub-
spaces after ordering the elements as [8]

ρ1≥ρ2 ≥. . .≥ ρp≥ρp+1 = ρp+2 = . . .=ρM−1 =0 (6)

where the first p elements, ρ1, . . . , ρp, correspond to the signal

subspace.

3.2. Sequential Hypothesis Test

In practice, due to the finite data length, the sample covariance

matrix R̂ is used, leading to radii ρ̂m,m = 1, . . . , M − 1.
From Equation (6), it can be deduced that estimating the num-

ber of sources p can be achieved by checking simultaneously for

zero the Gerschgorin radii ρ̂m, m = p + 1, . . . , M − 1, corre-
sponding to the noise-only subspace. This suggests the following

test statistics:

T1i =

M−1∑
m=i+1

ρ̂2
m (7)

T2i =

(
1

M − 1 − i

M−1∑
m=i+1

ρ̂m

)
−

(
M−1∏

m=i+1

ρ̂
1

M−1−i
m

)
(8)

for i = 0, . . . , M − 2.

In practice, the values of both statistics T1i (cumulated squared

radii) and T2i (difference between radii arithmetic and geometric

means) will be small (close to zero) if all the Gerschgorin radii

that they enclose correspond to the noise-only subspace, and sig-

nificantly greater than zero otherwise. Formulating this variation

in a sequence of independent hypothesis tests translates to

H0 : ρ1 = . . . = ρM−1 = 0
...

...

Hi : ρi+1 = . . . = ρM−1 = 0
...

...

HM−2 : ρM−1 = 0

(9)

The test starts by checking that the global null, H0, is veri-

fied, i.e., that no sources are present. If the hypothesis is not re-

jected, then the estimated number of sources is p̂ = 0. If H0 is

rejected, and its alternative, K0 : (ρ̂1 �= 0 or . . . or ρ̂M−1 �= 0),
is retained, then it is known that at least one source is present.

However no information is directly deduced about the actual num-

ber of sources. Thus, by stepping through the hypotheses Hi,

i = 0, . . . , M − 2, the contribution of the largest Gerschgorin
radius is eliminated sequentially from the test statistic and the di-

mension of the candidate noise-only subspace over which the null

is tested, is reduced. The test stops when a hypothesis is accepted,

or when it reaches HM−2, indicating that there areM −2 sources.
For a given level of significanceα, when no sources are present

(global null), the probability of correctly deciding that p̂ = 0 must
be maintained at 1 − α. Thus, each hypothesis in (9) is tested at a
level α.

3.3. Bootstrap: Estimation of the Distribution

At this stage, we make no assumption about the distribution of the

data and use the bootstrap to estimate the distribution under the

null of the test statistics T1,2i [2, 5]. The principle of the bootstrap

is that the data sample represents an empirical estimate of the true

distribution. Thus, resampling from this estimate creates bootstrap

data sets which are used to conduct inference. The bootstrap there-

fore avoids errors due to the asymptotic approximations in small

sample scenarios.

An example of estimated distributions corresponding to the

statistics T2,i, i = 0, . . . , 5, is shown in Figure 1, whereM − 1 =
6, p = 2, L = 100, for SNR=3 dB at a Worst Noise Power Ra-
tio1 (WNPR) of 10. In Figure 1, BS and MC stand for bootstrap
and Monte-Carlo, respectively. Empirical tests show that the dis-

tributions under the null (noise-only subspace) can be accurately

estimated using the bootstrap. For similar cases, [5] and the ref-

erences therein highlight the issue of improving the estimates of

1WNPR is defined in [11] as WNPR = σ2
max/σ2

min
.
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Fig. 2. Performance of the detectors vs: (a) SNR, (b) SNR (Gaussian signals in Laplacian noise), (c) SNR (Laplacian signals in Gaussian
noise), (d) L, (e)WNPR, (f)∆θ.

the empirical distributions of complicated test statistics (i.e., func-

tions of the eigenvalues), using for example, fewer resamples or

subsampling.

Let the b-th bootstrap resample of the data be denoted x�
b(t),

for t = 1, . . . , L and b = 1, . . . , B. From B bootstrap resamples,
the estimate of the empirical distribution of the test statistics under

the null can be obtained as [5, 10]

T̂H
i (b) = T �

i (b) − Ti; b = 1, . . . , B (10)

where Ti is the test statistics evaluated from the data x(t), while
T �

i (b) is the test statistics evaluated from the resample x�
b(t). The

significance values for the hypothesis tests of (9) are given by [5,

10]

Pi =
1

B

B∑
b=1

I
(
|Ti| ≤ |T̂H

i (b)|
)

(11)

with I(.) being the indicator function.
Thus, with a level of significance α, starting from i = 0, if

Pi ≥ α then Hi is accepted, otherwise set i = i+1 and repeat the
test.

4. SIMULATION RESULTS

We show the global performance of the bootstrap-based detectors

(T1 and T2) and compare it to the previously proposed Gerschgorin-

based detector, namely the NU-MDL [8].

A Uniform Linear Array (ULA) is assumed withM = 5 sen-
sors. The true number of sources is p = 2. The samples are
bootstrapped B = 100 times and a global level of significance
α = 2% is chosen. All the examples illustrate the empirical prob-
ability of correct detection resulting from 1000Monte-Carlo runs.

Unless indicated otherwise, the noise and the signals are assumed

to be Gaussian.

Figure 2 (a) illustrates the performance with respect to SNR.

The fixed parameters are the number of snapshots L = 100, the
angles of arrival θ = [4◦, 20◦]T , and WNPR=10, whereas SNR is
variable. With Gaussian data, as expected, the NU-MDL performs

better than T1 and T2 as it employs an accurate goodness-of-fit

term. The latter is based on the Gaussian distribution and thus

correctly fits the data. In addition to that, the bootstrap detectors

as hypothesis tests are different from the NU-MDL information

criterion which is known for its consistency properties. The boot-

strap detectors perform well without any a priori knowledge of the
distribution of the data. Note the relative improvement in perfor-

mance of T2 as opposed to T1. This can be explained by the fact

that when testing for the null (checking for T1,2 to be zero), the

structure of T2 (difference between two metrics) allows it to be

closer to zero “more often” than T1.

When the data or the noise is not Gaussian, as shown on Fig-

ures 2 (b) and (c), NU-MDL does not perform very well as it is

derived for the particular case of stochastic data in Gaussian noise.

The bootstrap detectors however do not require any assumption on

the data and therefore as the SNR increases, they outperform NU-

MDL. Note that performance of the bootstrap detectors is similar

to the Gaussian case, indicating the robustness of the detectors.

Figure 2 (d) shows the effect of varying the number of snap-

shots L. As expected, performance of the three detectors improves
with increasing L, as the discriminating capability of the Ger-
schgorin radii of the transformed sample covariance matrix, on

which the detectors are based, sharpens.

Figure 2 (e) illustrates the effect of WNPR which varies, while

the other parameters are fixed. The number of snapshots is L =
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100, and SNR=10 dB. The noise covariance matrix has the follow-
ing structure

q = [2/WNPR 1/WNPR 1 8/WNPR 1/WNPR]T .
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Fig. 3. Relation between M and L and effect on the detectors’
performance: (a) T1, and (b) T2.

The value of WNPR varies from 1 to 50. Note that when the
WNPR approaches 1, the scenario is close to the special uniform
noise case. This example shows the sensitivity of NU-MDL to

noise nonuniformity. The bootstrap detectors perform better even

in a situation where the data is Gaussian.

Figure 2 (f) illustrates the performance with respect to the an-

gular resolution. The same parameters are employed in this ex-

ample, except for SNR=10 dB, θ1 = 10◦ and θ2 is set to vary

from 10◦ to 26◦. Note again that NU-MDL performs better with
Gaussian data.

Figure 3 illustrates the joint effect of the number of snapshots

L and the number of sensors M on the performance of the boot-

strap detectors. The fixed parameters are the angles of arrival

θ = [25◦, 35◦]T , SNR=10 dB, and WNPR=5. The number of
snapshots is set to vary from 20 to 120. The performance is evalu-
ated for different values ofM . In general, as expected, the perfor-
mance improves with L increasing. Note however that for a fixed
significance level α, even in asymptotic conditions, the hypothesis
test stays below 100% detection rate. An important observation
concerns the effect of the number of sensors M . Indeed, as the
data vector x(t) increases in size (increasing degrees of freedom),
the bootstrap requires a larger “minimal” number of snapshots to

faithfully estimate the empirical distribution of the different vari-

ables. Thus, for T1, when L ≤ 70, the detection rate is lower with
M = 7 than with M = 4. On the other hand, above a certain
value (L = 80), the bootstrap gives better results, and the joint
effect of increasing M and L improves the detection rate signifi-
cantly. As explained earlier, because of its structure, T2 shows a

better performance than T1.

5. CONCLUSION

A sequential hypothesis test for source detection has been pro-

posed for a spatially nonuniform noise environment, when no a
priori knowledge about the distribution of the data is available.
The detector applies a transformation of the covariance matrix

of the data. The proposed test statistics are based on the pre-

viously demonstrated discrimination property of the Gerschgorin

radii. The distribution under the null of the test statistics is esti-

mated using the bootstrap. Simulation results illustrate the power

of the method to correctly detect the sources in various scenarios.
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