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ABSTRACT

A common model for sonar clutter is of the transmitted sig-
nal convolved with a colored Gaussian process relating to
the sea-bottom profile. This environment becomes strongly
non-Gaussian if there are multiple realizations: the univari-
ate statistics remain Gaussian, but the joint probability den-
sity function (pdf) is not. It turns out that the gains versus a
Gaussian-assumption can be substantial.

1. INTRODUCTION

We consider reverberation in active sonar to be the reflection
of the transmitted signal from bottom, surface and from dis-
tributed matter. In this paper we are specifically interested in
the Gaussian model [5] since it is commonly applied, since
it is an intuitive and simplified version of [2], and since it is
tractable.

Under the Gaussian model for clutter, we model the
clutter as the convolution (�) of the transmitted signal s(t)
with a (low-pass Gaussian) “bottom-profile” process b(t).
Intuitively, b(t) ought to be relatively constant with time
(not that b(t) is nearly constant, but rather that the profile
is repeatable); again, intuitively, a wise detection procedure
should examine the return more than once, in order that
there be some estimation — and subtraction of the effect
— of b(t). Thus, in this paper, we consider the “two-look”
situation

r1(t) = A1s1(t − τd)ej2πfdt + ν1(t) + b1(t) � s1(t)
r2(t) = A2s2(t − τd)ej2πfdt + ν2(t) + b2(t) � s2(t) (1)

in which Ai are complex Gaussian amplitudes, τd and fd are
the delay/Doppler pair associated with the target and νi(t)
are additive white complex Gaussian noises, and in which
the first terms are missing if the target is absent. It may be
beneficial that the interrogating waveforms s1(t) and s2(t)
be of different types [3], since it is known that different
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waveforms can have complementary characteristics with re-
gard to range and range-rate [1]. Note that in (1) some
generality is admitted in that the two clutter-generating pro-
cesses b1(t) and b2(t) are allowed to vary; but for the prob-
lem to be interesting they must be strongly dependent.

Model (1) informs the paper. It may appear a trivial
Gaussian problem for which some version of the matched
filter is optimal; and indeed if b1(t) and b2(t) were jointly
Gaussian, this would be so. However, let us consider the
case that b2(t) = b1(t)ejθ for θ ∼ U(0, 2π): the two noises
becomes uncorrelated, and the corresponding Gaussian as-
sumption detector combines matched filter energies. The is-
sue is that despite the Gaussian appearance of the problem,
it is not Gaussian.

In the following Section 2 we shall abstract from (1)
a simple bivariate detection problem and demonstrate the
non-Gaussianity directly. In Section 3 we shall look at sev-
eral versions of (1). In Section 4 we give examples of the
performances of the optimal (or approximately optimal) de-
tectors, and compare them with the matched filter that would
arise from an assumption of Gaussianity. A more detailed
version of this paper is available in [4].

2. DISCUSSION OF SCALAR CASE

Let us consider the simplification of (1) in which all is scalar.
The hypothesis test is

H : y1 = ν1 + bejθ1

y2 = ν2 + bejθ2

K : y1 = s1 + ν1 + bejθ1

y2 = s2 + ν2 + bejθ2 (2)

in which

• b is complex normal with variance 2σ2
b and zero mean

• θ1 and θ2 are iid uniform (0,2π)

• ν1 and ν2 are iid complex normal with variance 2σ2

and zero mean

• s1 and s2 are known

• y1 and y2 are the observations
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Fig. 1. Joint distribution of x1 and x2 (the real parts of y1
and y2 in (2)) for σ = 0.1 and σb = 1.

Clearly�(y1) and�(y1), the real and imaginary parts of y1,
are jointly Gaussian (and independent); the same holds for
�(y2) and �(y2). But let x1 = �(y1) and x2 = �(y2): fig-
ure 1 shows f(x1, x2|H) for σ = 0.1 and σb = 1 by numer-
ical integration. Obviously, f(x1, x2|H) is not a bivariate
Gaussian distribution. Intuition suggests that the matched
filter

Tmf = �(s∗1y1 + s∗2y2) (3)

statistic, which would be optimal were the noise Gaussian,
is wasteful of information. At high CNR the detector

Tsd =
(
|y1|2 − |y2|2

)2

−
(
|y1 − s1|2 − |y2 − s2|2

)2

(4)
that takes advantage of the common length of b should be
preferable (“sd” denotes subtracted distance). But there is
no guarantee that (4) should be close to optimal; we find
that it is not.

3. OPTIMAL JOINT DETECTOR

This section derives and discusses the optimal or approx-
imated optimal detectors for joint detection of two wave-
forms in four cases, with the last one a discrete-time version
of (1). It is supposed that

• �b is a vector that is complex normal with covariance
2Rb and zero mean

• θ1 and θ2 are iid uniform (0,2π)

• φ1 and φ2 are iid uniform (0,2π)

• �ν1 and �ν2 are iid complex normal with covariance
2σ2I and zero mean

• �s1 and �s2 are known vectors

• �y1 and �y2 are vectors of the observations

• Dimension of these vectors is L, and all vectors are
column vectors. When L = 1, Rb = σ2

b .

In the first two cases the clutter is bejθ1 and bejθ2 ; in
cases III & IV the clutter is (b⊗s1)ejθ1 and (b⊗s2)ejθ2 ; this
latter, with ⊗ denoting element-by-element multiplication,
is as will be explained later a proxy for (1).

3.1. Case I: Clutter not related to signal, known signal

The hypothesis test is

H : �y1 = �ν1 +�bejθ1

�y2 = �ν2 +�bejθ2

K : �y1 = �s1 + �ν1 +�bejθ1

�y2 = �s2 + �ν2 +�bejθ2 (5)

Some algebra (see [4]) leads us to the optimal test statistic

Topt I =
1
σ2

� (
�yH
1 (I − Σ−1)�s1 + �yH

2 (I − Σ−1)�s2

)

+ log I0

(
1
σ2

∣∣(�y1 − �s1)HΣ−1(�y2 − �s2)
∣∣)

− log I0

(
1
σ2

∣∣�yH
1 Σ−1�y2

∣∣) (6)

where

Σ = σ2R−1
b + 2I α = θ1 − θ2 (7)

and in which I0(·) is zero-order modified Bessel function of
the first kind. Some similarity in form to the intuitive (4)
is apparent1, but it is clear that the optimal detector is more
involved. In fact, while the detector of (4) is appealing and
is generally an improvement over the matched filter, there
is usually a considerable gap between it and the optimal de-
tector.

3.2. Case II: Clutter not related to signal, known signal
with random phase

The hypothesis test is

H : �y1 = �ν1 +�bejθ1

�y2 = �ν2 +�bejθ2

K : �y1 = �s1e
jφ1 + �ν1 +�bejθ1

�y2 = �s2e
jφ2 + �ν2 +�bejθ2 (8)

We have

f(�y1, �y2|K, θ1, θ2) (9)

=
∫

φ1

∫
φ2

f(�y1, �y2|K, φ1, φ2, θ1, θ2)dφ2dφ1

1A reasonable approximation is that the logarithm of the Bessel func-
tion is quadratic for small arguments and linear for large.
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where

f(�y1, �y2|K, φ1, φ2, θ1, θ2) =
1

(2π)2Lσ2L|σ2I + 2Rb|×

exp
{
− 1

2σ2

[
(�y1 − �s1e

jφ1)H(I − Σ−1)(�y1 − �s1e
jφ1)

+(�y2 − �s2e
jφ2)H(I − Σ−1)(�y2 − �s2e

jφ2)

−2� (
(�y1 − �s1e

jφ1)HΣ−1(�y2 − �s2e
jφ2)ejα

)] }
(10)

and Σ and α are defined in (7). Unfortunately, we cannot
get explicit expressions for the two integrations in equa-
tion (9), and we are forced to use numerical approximation;
fortunately, from simulation, we find that relatively coarse
quantization of φ1 and φ2 (see (15) and (16)) yields good
performance.

3.3. Case III: Clutter related to signal, known signal

The hypothesis test is

H : �y1 = �ν1 + (�b ⊗ �s1)ejθ1

�y2 = �ν2 + (�b ⊗ �s2)ejθ2

K : �y1 = �s1 + �ν1 + (�b ⊗ �s1)ejθ1

�y2 = �s2 + �ν2 + (�b ⊗ �s2)ejθ2 (11)

in which “⊗” denotes element-by-element multiplication (i.e.,
“b.*s” in Matlab). Note that in (1) the clutter is defined by
a convolution rather than by the element-by-element multi-
plication of (11); however, if the discrete Fourier transform
(DFT) of a sampled version of (1) is taken, (11) results.

The joint distribution of �y1 and �y2 under K is

f(�y1, �y2|K, θ1, θ2) =
1

(2π)2Lσ2L|σ2I + ΛH
1 Λ1Rb + ΛH

2 Λ2Rb|
× exp

{
− 1

2σ2

[
(�y1 − �s1)H(I − Λ1Σ−1ΛH

1 )(�y1 − �s1)

+(�y2 − �s2)H(I − Λ2Σ−1ΛH
2 )(�y2 − �s2)

−2� (
(�y1 − �s1)HΛ1Σ−1ΛH

2 (�y2 − �s2)ejα
)]}

(12)

(under H the signal terms are missing) where the definition
of α is in equation (7), and in which

Σ = σ2R−1
b + ΛH

1 Λ1 + ΛH
2 Λ2 (13)

for Λi = diag(�si), and the definition of α is in equation (7).
The explicit optimal test statistic is

Topt III =
1
σ2

�{
�yH
1 (I − Λ1Σ−1ΛH

1 )�s1

+�yH
2 (I − Λ2Σ−1ΛH

2 )�s2

}
+ log I0

(
1
σ2

∣∣(�y1 − �s1)HΛ1Σ−1ΛH
2 (�y2 − �s2)

∣∣)

− log I0

(
1
σ2

∣∣�yH
1 Λ1Σ−1ΛH

2 �y2

∣∣)

3.4. Case IV: Clutter related to signal, known signal with
random phase

The hypothesis test is

H : �y1 = �ν1 + (�b ⊗ �s1)ejθ1

�y2 = �ν2 + (�b ⊗ �s2)ejθ2

K : �y1 = �s1e
jφ1 + �ν1 + (�b ⊗ �s1)ejθ1

�y2 = �s2e
jφ2 + �ν2 + (�b ⊗ �s2)ejθ2 (14)

As in case II, we cannot get an explicit expression for the
two integrations in f(�y1, �y2|K), and a similar numerical ap-
proximation is used. The pdf f(�y1, �y2|K, φ1, φ2, θ1, θ2) is
as in (12), with the exception that �si is multiplied by ejφi .
The optimal statistic is approximated as

Topt IV ≈
∑

i

∑
j

eB(φi
1,φj

2) (15)

where

B(φi
1, φ

j
2) =

1
σ2

�
{
�yH
1 (I − Λ1Σ−1ΛH

1 )�s1e
jφi

1

+�yH
2 (I − Λ2Σ−1ΛH

2 )�s2e
jφj

2

}

+ log I0

(
1
σ2

∣∣∣(�y1 − �s1e
jφi

1)HΛ1Σ−1

× ΛH
2 (�y2 − �s2e

jφj
2)

∣∣∣)

− log I0

(
1
σ2

∣∣�yH
1 Λ1Σ−1ΛH

2 �y2

∣∣) (16)

4. SIMULATION RESULTS

Here we compare the performance of the optimal or approx-
imated optimal detectors derived in Section 3 to the matched
filter. Only the scalar case is simulated, several representa-
tive values are selected for s1 and s2. The matched filter
used for cases I and III is

�(�yH
1 �s1 + �yH

2 �s2) (17)

while that for cases II and IV is

|�yH
1 �s1|2 + |�yH

2 �s2|2 (18)

since in those cases the return signal has a random phase.
Table 1 compares the optimal detector and matched fil-

ter, with σb = 1 and σ = 0.1 (i.e., a high CNR) and
Pfa = 0.1%. In cases II and IV, in which the optimal
detector is only approximated, 10 uniform levels of quan-
tization for φ1 and φ2 are used. The performance difference
between the detector based on a Gaussian assumption (i.e.,
the matched filter) and the optimal detector is startling. The
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s1 = 2 s1 = 2 + 1j
Pd s2 = 2 s2 = 2 + 2j

MF 0.1467 0.4171
Case I SD 0.1813 0.2678

OD 0.8265 0.9465

MF 0.0342 0.1192
Case II SD 0.1494 0.2165

OD 0.6322 0.7806

MF 0.0178 0.0171
Case III SD 0.2387 0.0729

OD 0.7962 0.8313

MF 0.0043 0.0047
Case IV SD 0.2228 0.0694

OD 0.7198 0.7613

Table 1. Probability of detection of the optimal detector
and matched filter under four cases of hypothesis test and
different transmitted signals. Pfa = 0.1%, σb = 1, σ =
0.1, and there are 10 levels uniform quantization for φ1 and
φ2 in both case II and IV. “MF” represents the (appropriate)
matched filter, “SD” the detector defined in equation (4) and
“OD” the optimal detector.

detector defined in equation (4) generally performs better
than the matched filter, while it is always worse than the
optimal detector.

Figure 2 is of the probability of detection versus the
number of quantization of φ1 and φ2 (quantization of φ1 and
φ2 are same) for the approximated optimal detectors in case
II and IV, respectively, with s1 = 2, s2 = 2, Pfa = 0.1%,
σb = 1 and σ = 0.1. We can see that relatively low level
quantization of φ1 and φ2 can yields close-to-optimal detec-
tion performance.

5. CONCLUSIONS

Motivated by the detection of random-phase sonar signals
in signal-generated clutter, we explore a particular case of
two-look (fused) signal detection in noise that is dependent
across channels. The noise is complex Gaussian and is the
same in each channel except for a random phase. These two
noise processes are uncorrelated, and a reasonable but naı̈ve
assumption of Gaussianity would lead to a conclusion that
these noise processes are independent of each other. They
are not independent, and indeed, although their univariate
distributions are Gaussian, their joint pdf is strongly non-
Gaussian.

Here we derive the optimal detectors for four cases with
a known signal: with/without random phase; and clutter that
is/is not signal-dependent. The last and most involved case
is a proxy for the detection of sonar signals in clutter, at least
after DFT processing. When the signal is known precisely
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Fig. 2. Probability of detection versus quantization of φ1
and φ2 (quantization level of φ1 and φ2 are same) for the ap-
proximated optimal detectors in case II and IV, respectively.
s1 = 2, s2 = 2, Pfa = 0.1%, σb = 1 and σ = 0.1.

the optimal detector is explicit, and involves logarithms of
Bessel functions of quadratic forms; with a random phase
the optimal detector requires an integral, but there is an
easy approximation given. In all cases, the performance im-
provement referred to the appropriate matched filter detec-
tor can be enormous when the CNR is large.
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