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ABSTRACT

For estimating the posture, i.e., position and orientation, of an ex-
tended target based on range measurements, a new closed-form
solution is proposed, which is based on decoupling position and
orientation. For decoupling, any procedure for range-based local-
ization of point targets, i.e., for mere position estimation, can be
used. The new solution is suboptimal, but nevertheless provides
good accuracy and is very practical from an application point of
view.

1. INTRODUCTION

This paper is concerned with estimating the posture, i.e., posi-
tion and orientation, of a target object with respect to an external
coordinate system based on measured ranges between reference
points in the external world and reference points attached to the tar-
get. This kind of problem typically arises in acoustic localization
systems, where for example loudspeakers placed in the environ-
ment emit signals picked up by microphones attached to the target.
When the audio signals emitted by the loudspeakers are addition-
ally transmitted through a different medium, e.g. wireless radio,
to the microphones, the acoustic propagation delays can be con-
verted to ranges between loudspeakers and microphones. These
propagation delays are usually determined by means of correlation
techniques [1].

Several solutions for range-based localization have been re-
ported in [2–4]. These methods, however, only estimate the po-
sition and not the orientation. They use a geometry-based ap-
proach [2], closed-form solutions [3] or solutions of the nonlinear
measurement equation by means of Taylor-series expansions [4]
or gradient descent procedure.

This paper introduces a new closed-form solution for the range-
based posture estimation problem based on decoupling of position
and orientation. Decoupling is achieved by expressing the target
reference points with respect to the external coordinate system and
vice versa. For that purpose, any localization procedure for con-
verting range measurements to positions of a point target can be
employed. Here, a practical closed-form solution will be reviewed
and used for that purpose.

The structure of the paper is as follows. A mathematical for-
mulation of the range-based localization problem is given in Sec-
tion 2. An appropriate localization procedure for point targets used
for decoupling position and orientation is reviewed in Section 3.
Section 4 is then concerned with the new closed-form posture es-
timation procedure. A solution sketch is given in Section 4.1. The

corresponding derivations are performed in Section 4.2. The per-
formance of the new closed-form solution compared to the optimal
iterative solution is evaluated in Section 5. In Section 6, an acous-
tic tracking system is presented, which makes use of the proposed
new algorithm. Conclusions and some details on future investiga-
tions are given in Section 7.

2. PROBLEM FORMULATION

We consider the problem of estimating the posture, i.e., position
and orientation, of a target frame with respect to a world coordi-
nate system. The relationship between a point T P in the target
coordinate system and its representation W P in the world coordi-
nate system is described by a nonlinear equation

WP = WTT
TP + T , (1)

where W TT is the rotation matrix, which comprises the orien-
tations. T contains the translations, which correspond to the posi-
tion of the target frame.

Estimation is based on ranges Rij measured between N ref-
erence points TCi, i = 1, . . . , N , attached to the target and given
with respect to the target frame and M reference points WP j ,
j = 1, . . . , M , given with respect to the world frame. The ranges
are related to W TT and T according to

Rij =
∥∥∥ WP j −

(
WTT

TCi + T
)∥∥∥

2
.

A maximum of N ·M ranges Rij for i = 1, . . . , N , j = 1, . . . , M ,
is available.

3. CLOSED-FORM SOLUTION FOR POSITION

In this section, we consider estimating the position of a single point
target at position x. For that purpose, a set of ranges

Rj =
∥∥∥x − WP j

∥∥∥
2

(2)

measured between the target and the reference points WP j , j =
1, . . . , M , given with respect to the world coordinate system are
available.

Several options for estimating x including iterative nonlinear
optimization procedures have been proposed. Here, we will review
a closed-form solution given in [3].

The first step is to square the nonlinear measurement equation
according to

R2
j = (x − WP j)

T(x − WP j) ,
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which gives

R2
j = ‖x‖2

2 − 2 WP
T
jx +

∥∥∥ WP j

∥∥∥2

2
.

This equation can be rewritten in vector-matrix notation as

δ + ‖x‖2
2 1M = Hx (3)

with

δ =

⎡
⎢⎢⎣

∥∥ WP 1

∥∥2

2
− R2

1

...∥∥ WP M

∥∥2

2
− R2

M

⎤
⎥⎥⎦ , H = 2

⎡
⎢⎢⎣

WP
T
1

...
WP

T
M

⎤
⎥⎥⎦ , 1M =

⎡
⎢⎣

1
...
1

⎤
⎥⎦

︸︷︷︸
(length M)

,

which is linear once the distance ‖x‖2 is known. Before we obtain
a position estimate from (3), this distance has to be estimated. For
that purpose, the formal least-squares solution of x in terms of
‖x‖2

2 is written as

x̂1 = α̂1 + ‖x‖2
2 β̂

1

with

α̂1 = G1δ , β̂
1

= G11M , G1 = (HTE−1
1 H)−1HTE−1

1 ,

where E1 is an appropriate weighting matrix. The relationship
‖x‖2

2 = xTx is then used to obtain a quadratic equation for ‖x‖2
2

given by

β̂
T

1
β̂

1
(‖x‖2

2)
2 + (2α̂T

1β̂1
− 1) ‖x‖2

2 + α̂T
1α̂1 = 0 . (4)

Upon replacing ‖x‖2
2 by the abbreviation r, a positive root1 r̂ of

(4) can be used as an estimate for ‖x‖2
2 in (3) and a weighted least-

squares estimate x̂2 for the target position x is obtained as

x̂2 = α̂2 + r̂β̂
2

with

α̂2 = G2δ , β̂
2

= G21M , G2 = (HTE−1
2 H)−1HTE−1

2 ,

where E2 is an appropriate weighting matrix.

4. CLOSED-FORM SOLUTION FOR POSTURE

Based on the closed-form solution for the position of point targets
given in Section 3, known reference points given with respect to
a certain coordinate system can be converted to reference points
with respect to a different coordinate system. This feature is now
exploited for deriving a new closed-form solution for calculating
the desired posture of extended targets by decoupling position and
orientation.

1In the case of two positive roots, the ambiguity must be resolved by
incorporating additional information.

4.1. Sketch of Solution

The closed-form solution for the target posture is performed in two
steps.

In the first step, the known reference points TCi, i = 1, . . . , N ,
with respect to the target frame and the N measured ranges Rij be-
tween these points and the known reference point WP j are used to
estimate the unknown point TP j with respect to the target frame.
This will be done for all unknown points TP j , j = 1, . . . , M , by
means of the solution given in Section 3. Similarly, the unknown
points WCi, i = 1, . . . , N , will be estimated by using the known
reference points WP j , j = 1, . . . , M , and the M measured ranges
Rij between these points and the point TCi.

In the second step (Section 4.2), translation and rotation are
decoupled based on the results of the first step. These results are
then used to derive two overdetermined systems of linear equa-
tions for the estimation of the translation vector and the rotation
matrix, which can easily be solved by means of standard tech-
niques.

4.2. Decoupling of Translation and Rotation

The decoupling of translation and rotation is based on the rela-
tionship (1), which converts points given in the target frame to the
world coordinate system. The relation between the known refer-
ence points TCi with respect to a target frame and the estimated
points WCi with respect to a world coordinate system is given by

WCi︸ ︷︷ ︸
estimated

= WTT
TCi︸︷︷︸
given

+T . (5)

A similar transformation for the known reference points WP j is
given by

WP j︸ ︷︷ ︸
given

= WTT
TP j︸︷︷︸

estimated

+T . (6)

4.2.1. Translation

Now a closed-form solution for the translation between the two
coordinate systems will be presented. To separate the translation
vector from the rotation matrix, we use (5) and obtain

WCi − T = WTT
TCi .

Squaring this equation gives

(
WCi − T

)T (
WCi − T

)
= TC

T
i

WTT
T WTT︸ ︷︷ ︸

identity matrix

TCi ,

and hence

WC
T
i

WCi − 2 WC
T
i T + T TT = TC

T
i

TCi . (7)

A similar result is obtained for (6)

(
WP j − T

)T (
WP j − T

)
= TP

T
j

WTT
T WTT︸ ︷︷ ︸

identity matrix

TP j ,

which gives

WP
T
j

WP j − 2 WP
T
jT + T TT = TP

T
j

TP j . (8)
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Subtracting (8) from (7) gives a relationship between the known
reference points, the estimated reference points, and the unknown
translation vector

WC
T
i

WCi − WP
T
j

WP j − TC
T
i

TCi + TP
T
j

TP j =

= 2
(

WCi − WP j

)T
T .

This can be written for i = 1, . . . , N , and j = 1, . . . , M , as a set
of N · M linear equations

δ
′
= H

′
T

with

δ
′
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

WC
T
1

WC1 − WP
T
1

WP 1 − TC
T
1

TC1 + TP
T
1

TP 1

...
WC

T
i

WCi − WP
T
j

WP j − TC
T
i

TCi + TP
T
j

TP j

...
WC

T
N

WCN − WP
T
M

WP M − TC
T
N

TCN + TP
T
M

TP M

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and

H
′
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2
(

WC1 − WP 1

)T

...

2
(

WCi − WP j

)T

...

2
(

WCN − WP M

)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

A weighted least-squares estimate for the translation vector is then
obtained as

T̂ =
(
H

′TW−1H
′)−1

H
′TW−1δ

′
.

4.2.2. Rotation

In order to separate the rotation matrix from the translation vector,
we subtract (6) from (5) and obtain

WCi − WP j︸ ︷︷ ︸
Wtij

= WTT

(
TCi − TP j

)
︸ ︷︷ ︸

Ttij

, (9)

or
Wtij = WTT

Ttij . (10)

This can be written as a set of N · M equations

W T = WTT
T T , (11)

with

W T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(
WC1 − WP 1

)T

...(
WCi − WP j

)T

...(
WCN − WP M

)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T

, T T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(
TC1 − TP 1

)T

...(
TCi − TP j

)T

...(
TCN − TP M

)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T

.

Rotation for a two-dimensional coordinate system
In the case of a two-dimensional coordinate system, the rotation
matrix is given by

WTT =

[
cos ψ −sin ψ
sin ψ cos ψ

]
. (12)

In order to estimate the orientation ψ, (10) is multiplied by
Tt

T
ij

[
1 0
0 1

]
, which results in

Tt
T
ij

[
1 0
0 1

]
Wtij = Tt

T
ij

[
1 0
0 1

]
WTT

Ttij . (13)

Using the rotation matrix, which is given by (12), (13) can be sim-
plified and an expression for cos ψ

Tt
T
ij

[
1 0
0 1

]
Wtij = cos ψ Tt

T
ij

Ttij (14)

is obtained. Similarly, an expression for sin ψ is obtained. For that

purpose, (10) is multiplied by Tt
T
ij

[
0 1
−1 0

]
. Analogously, it can

be simplified by using the rotation matrix and an expression for
sin ψ

Tt
T
ij

[
0 1
−1 0

]
Wtij = sin ψ Tt

T
ij

Ttij (15)

is obtained. Now we combine (14) and (15)

sin ψ

cos ψ
=

Tt
T
ij

[
0 1
−1 0

]
Wtij

TtT
ij

[
1 0
0 1

]
Wtij

and an expression for the orientation ψ is given by

ψ = atan

⎛
⎜⎜⎝

Tt
T
ij

[
0 1
−1 0

]
Wtij

TtT
ij

[
1 0
0 1

]
Wtij

⎞
⎟⎟⎠ . (16)

For calculating a unique orientation, atan2 should be used instead
of atan. In order to estimate the orientation ψ̂, a weighted average
of the orientations ψ̂ij with i = 1, . . . , N , and j = 1, . . . , M , is
calculated.

Rotation for a three-dimensional coordinate system
In the case of a three-dimensional coordinate system, the rotation
matrix comprises the three rotation angles

[
α β γ

]T
. By us-

ing (11), a least-squares estimate for the rotation matrix is then
obtained as

ˆWTT =

((
T T T T

T
)−1

T T W T
T
)T

.

5. SIMULATION RESULTS FOR A TWO-DIMENSIONAL
COORDINATE SYSTEM

The performance of the new approach is evaluated by simulations
in a two-dimensional coordinate system. The reference point lo-
cations WP j , j = 1, . . . , 4, in the world coordinate system are
selected as WP 1 = [0 0]T, WP 2 = [10 0]T, WP 3 = [0 10]T,
and WP 4 = [10 10]T. The reference point locations TCi, i =
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Fig. 1. RMSE versus noise standard deviation for translation and
orientation ψ.

1, . . . , 4, in the target frame are selected as TC1 = [0 0]T, TC2 =
[1 0]T, TC3 = [0 1]T, and TC4 = [1 1]T. Based on this arrange-
ment, N · M = 16 ranges are available. The reference solution
uses a gradient descent procedure with initial values obtained from
the proposed new posture estimation algorithm. The parameters of
the gradient descent procedure are the step-size parameter given
by 0.02 and the number of iterations given by 20. The simulated
range estimates were generated by adding zero-mean white Gaus-
sian noise of appropriate variance to the true range values.

The true translation is
[
x y

]T
=

[
4.5 6.2

]T
, and the true

orientation is ψ = 15◦. To compare the new algorithm with the
gradient descent procedure, 1000 trials were performed at sev-
eral noise levels for standard deviations ranging from 10−6 m to
10−1 m. The results are shown in Fig. 1. The Root-Mean-Square
Error (RMSE) between the estimation and the true values of the
posture is plotted as a function of the noise standard deviation.

For small measurement noise levels, the new posture estima-
tion algorithm provides results very close to the reference solution.
In an environment with a high noise level, the new posture estima-
tion algorithm still provides satisfactory results. However, if the
solution quality is not sufficient for the considered application, the
new approach at least provides a good starting guess for the sub-
sequent application of a gradient descent procedure.

6. EXPERIMENTAL SETUP FOR A
THREE-DIMENSIONAL COORDINATE SYSTEM

The proposed new algorithm for estimating the posture of a target
object is used for operator tracking in a telepresence scenario [5].
More specifically, the position and orientation of a head-mounted
display is estimated, which is attached to the operator’s head.

In the tracking system, several loudspeakers are placed on
the ceiling around the user environment at fixed positions in the
world coordinate system. The loudspeakers simultaneously emit
wide band audio signals, which are generated by a Blackfin-DSP-
System manufactured by Analog Devices. For the discrimination
of the signals, each signal spectrum is spread with an orthogonal
Gold Code of length 32. The signals are picked up by microphones
attached to the head-mounted display at fixed positions with re-
spect to the target frame. The Times of Arrival are estimated by
means of cross-correlation and then converted to ranges between
microphones and loudspeakers. The resulting ranges are used as
input for the new algorithm in order to compute a starting guess
for a gradient descent algorithm. This procedure provides 15 up-
dates per seconds for both translation and orientation. For demon-
strating the results of the procedure, a test run has been performed

0 50 100 150 200 250 300 35050

100
150

200
250

300
350

400

450
500

Updates

O
rie

nt
at

io
n 

in
 d

eg
re

es

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x - axis in meters

y 
- a

xi
s i

n 
m

et
er

s

Fig. 2. The estimated translation and orientation sequences in a
test run with a predefined motion trajectory.

with a predefined motion trajectory, where the operator walks on
a rectangular path. The corresponding estimated translation and
orientation sequences are shown in Fig. 2. A comparison of these
results with a few hand-measured reference postures revealed a
sufficient accuracy of the tracking algorithm for both translation
and orientation.

7. CONCLUSIONS AND FUTURE WORK

A new localization procedure has been introduced, which provides
a closed-form conversion from measured ranges to the desired pos-
ture of a target. Since it is based on decoupling position and ori-
entation, the proposed solution is suboptimal. However, it is much
more practical than the usual numerical approaches based on it-
erative optimization, which require a good starting guess in order
to ensure convergence to the optimal solution. Furthermore, the
required number of calculations and, hence, the convergence time
of iterative solutions depends upon the parameter values involved.
This is not the case for the proposed procedure, which provides so-
lutions after a fixed number of computations. In addition, the pro-
vided accuracy is sufficient for typical applications. In any case,
the new solution approach provides a very good starting solution
for iterative optimization.

Future work is concerned with an error analysis of the pro-
posed localization procedure in order to calculate optimal weight-
ing matrices in the required least-squares solutions.
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