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ABSTRACT 

Cross correlation function (CCF) is a powerful tool in time 

delay estimation and parabola functions are widely used as 

parametric models of it. However, no study has been done 

on the accuracy of the parabola approximation of CCF. In 

this paper we analyze the CCF of multi-sensors and derive 

the analytic forms of CCF for the stationary processes of 

exponential auto-correlation function and with respect to 

two important types of sensor kernels. We demonstrate 

that the Gaussian function is a better and more robust 

approximation of CCF than the parabola in these cases. 

This new approach leads to higher precision in time delay 

estimation using the CCF peak locating strategy.  

1. INTRODUCTION 

Multi-sensors are widely used for robust estimation, 

communication and data fusion. When multiple digital 

sensors of different physical characteristics and varying 

spatial locations sample a continuous-time signal, they 

produce correlated discrete-time sequences with some time 

displacements. The cross correlation function (CCF) is a 

powerful tool to register these discrete signals sampled by 

different sensors in time domain.   

The time delay estimation of two analog signals 

through cross-correlation technique has been extensively 

studied [1-3] since Knapp and Carter gave a maximum 

likelihood estimator of the relative delay between two 

continuous signals [1]. However, this method needs to 

know the spectra of signals and noise and it applies to 

analog signals only. For digital systems a popular 

approach of time delay estimation is to locate the peak of 

the two discrete signals’ CCF [4-6]. The delay is generally 

not an integral multiple of the sampling period. To 

estimate the delay in an arbitrary precision, a common 

technique is to fit the CCF by a parabola with three 

samples in the neighborhood of the peak correlation value.   

In this paper we are interested in analyzing the CCF 

and the techniques to estimate the time delay by locating 

the CCF’s peak position with a small number of 

measurements of the CCF. We will derive the analytical 

forms of the CCFs for Gaussian and Box sensor kernels 

for the class of stationary signals that have an 

exponentially decaying auto-correlation function (ACF). 

Our analysis will explain why the parabola function can fit 

the CCF reasonably well, as previously believed in the 

literatures. More importantly, we establish Gaussian 

function to be a better and more robust approximation of 

the CCF. Indeed, the new Gaussian model leads to 

superior performance in time delay estimation to the 

parabola-based method. 

2. PRELIMINARIES 

Consider a continuous information source )(ts  under 

observation. The discrete observation produced by any 

two sensors are )()()( kkxky iii υ+= , 2,1=i . Noise 
iυ is

zero mean and signal ∫
+

+−
= i

i

kT

Tk
ii dttgtskx

∆

∆)1(
)()()( , where T

is the sampling period and 
i∆  is the time delays of sensor 
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Figure 1. The sampling process of digital signal )(kyi
.

Fig. 1 shows the sampling procedure of )(kyi
. First 

)(tsi
 is generated by passing )(ts  through filter )( tgi − ,

i.e., )()()( tgtsts jj −∗= . Then )(tsi
 is sampled by a Dirac 

sequence with period T  and time shift 
i∆  so that  

)()()()( iiiii kTsdtkTttskx ∆∆δ −=−−⋅= ∫           (1) 

Finally )(kyi
 is obtained by adding noise )(kiυ  to )(kxi

.

Assume that )(ts  is a stationary process, then its ACF is 

{ })()()()( τττ +=−= tstsERR ss
. The CCF of signals )(1 ts

and )(2 ts  is given by [8]: 
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Using )(1 ky  and )(2 ky , we can compute some 

observation values of )(12 τR . Denote by 
12 ∆∆∆ −=  the 

relative time delay between )(1 kx  and )(2 kx , there is 
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where N  is the length of the samples used in calculation. 

The accuracy of )(12 nℜ  is affected by the level of 

measurement noises 
iυ  and the sample length N .

A widely used method to estimate ∆  is to find the 

peak position of )(12 nℜ . Suppose that )(12 nℜ  takes on its 

maximum value at 
0n . If ∆  is an integral multiple of T ,

we simply have Tn0=∆ . When ∆  is a fractional multiple 

of T , the current technique is to fit a parabola function 

with points )1( 012 −ℜ n , )( 012 nℜ  and )1( 012 +ℜ n , and 

estimate ∆  to be the peak position of the fitted parabola 

[4-5]. This kind of technique is simple but efficient and 

can estimate ∆  to the desired precision. But two 

fundamental problems remain open: what is the exact 

expression of CCF )(12 τR  given some prior knowledge of 

ACF )(τsR  and sensor kernels, and what is the best model 

to be used to fit )(12 τR  by the available observations 

)(12 nℜ  given a constraint on the model complexity? These 

are the issues to be addressed in the next sections. 

3. ANALYSIS OF CCF 

In this paper we consider the class of processes whose 

ACF can be written as an exponential function: 
τβατ −⋅= eRs )(                                  (4) 

where parameters α  and β  are positive real numbers. 

This class of processes can represent many information 

sources such as the Gaussian Markov processes. Doob [7] 

showed that the ACF of any random Gaussian and Markov 

process can be modeled as an exponential function. Given 

)(τsR , the CCF )(12 τR  depends only on the sensor kernel 

)(tgi
. Due to the physical limitation of sensors, in real 

systems )(tgi
 are low-pass filters. Next we analyze )(12 τR

for two important cases of sensor kernels used in many 

applications: Gaussian kernels and Box kernels. 

A. Gaussian kernels 

Suppose )(tgi
is a Gaussian function centered at 

origin and has standard deviation 
iν . Without loss of 

generality, we set 1=T . To ensure that )(tgi
is nearly 

zero outside sampling interval [ ]2/1,2/1− , we let 

4/1≤iν . (But the following development is independent 

of this condition). Since kernels )(1 tg and )(2 tg  are 

Gaussian, their convolution is also Gaussian. Let 
)2/(

2

1
21

22

)()()( ν
νπ

tetgtgtG −=∗−=            (5) 

where 2

2

2

1 ννν +=  is the standard deviation of )(tG . For 

all 4/1, 21 ≤νν , we have 42≤ν . After some 

computation, we can derive that  

))()(()()()(12 τττττ rls ffCGRR +⋅=∗=         (6) 

where constant 2/

2

22βνα eC =  is independent of τ  and  

)erfc()(
2

2

ν

τβντβτ += ef l
, )erfc()(

2

2

ν

τβντβτ −−= ef r
   (7) 

where ∫
∞ −=
x

t dtex
2

2)erfc(
π

 is the complementary error 

function.  

The shape of )(12 τR  is determined by 

)()()( τττ rl fff += . Since )(τf  is an even function, it 

suffices to discuss the case when 0≥τ . Note that the 

decreasing speed of )2/)erfc(( 2 ντβν +  is faster than the 

increasing speed of τβe . So when τ  is greater than some 

positive number, 0)( →τlf  and 2)2/)erfc(( 2 →− ντβν
and then τβττ −⋅→⋅≈ eCfCR r 2)()(12

. That is to say, 

when τ  is large, )(τf  and in turn )(12 τR  can be 

approximately modeled by an exponential function.  

However, in time delay estimation by locating the 

peak position of )(12 τR  we are more interested in the 

behavior of )(12 τR  around origin. The shape of )(12 τR

depends on two parameters, β , the decaying parameter of 

ACF )(τsR , and ν , the standard deviation of )(xG  in (5). 

When ν  decreases, )(xG  shapes more like a Dirac 

function, hence the shape of )(12 τR  approaches to that of 

)(τsR  due to convolution )()()(12 τττ GRR s ∗= . Similarly, 

when ν  is fixed and β  increases, the shape of )(τsR

approaches to a Dirac function and then the shape of 

)(12 τR  approaches to the Gaussian function )(xG .

B. Box kernels 

Another common sensor kernel is the Box function, 

i.e., )(tgi
 is constant in support [ ]2/1,2/1− . In other 

words, the sensor samples the observed process as an 

integrator in each sampling period. Since that )(1 tg  and 

)(2 tg  are Box kernels, their convolution is  

⎪
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Because CCF )()()(12 τττ GRR s ∗=  is an even function, 

we only consider the case for 0≥τ .

After some tedious computations, we have  
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When 1>τ , )(12 τR  is an exponential function, and when 

1≤τ , )(12 τR  is a linear combination of exponential terms 

βτ−e  and βτe  and linear term τ . The shape of )(12 τR  is 

controlled by β . (Parameter α  only affects the magnitude 

scale of )(12 τR .) With the increasing of β , the shape of 

ACF )(τsR  approaches to a Dirac function so that the 

shape of CCF )(12 τR  approaches to that of )(tG  defined in 

(8), which is actually the first order spline function. 

4. TIME DELAY ESTIMATION BY CCF FITTING 

Unfortunately, CCF )(12 τR  does not have a simple 

closed form, as revealed in the proceeding section. But 

)(12 τR  is a smooth even function and it exhibits a 

quadratic-like behavior near the origin. This explains the 

past success of parabola fitting of )(12 τR  near the peak 

position. Suppose that )(12 nℜ  are the true samples of 

)(12 τR , i.e., )()( 1212 ∆−=ℜ nTRn . The task of time delay 

estimation is to determine ∆  from the parametric model 

fitted by points )1( 012 −ℜ n , )( 012 nℜ  and )1( 012 +ℜ n . If ∆
is an integral multiple of sampling period T , we have 

Tn0=∆ . However, in practice ∆  has an arbitrary real 

value and the fractional part of ∆  can be written as 

Tn0−= ∆∆ε                              (10) 

Denote parabola cbxaxxf p ++= 2)( , whose parameters 

are determined by the three significant samples. The 

fractional part ε∆  is estimated as 

abTp 2/ˆ −=∆                             (11) 

A natural question is if there exists a better model of 

)(12 τR  in the neighborhood of origin given the same 

number of model parameters? Intuitively the Gaussian 

function 
2)()( cxb

g eaxf −−⋅=  is a good candidate. Let 

)1()1( 012 −=−ℜ gfn , )0()( 012 gfn =ℜ  and 

)1()1( 012 gfn =+ℜ , we have 

)1(ln2)1(ln2)(ln4

)1(ln)1(ln

012012012

012012

+ℜ−−ℜ−ℜ
−ℜ−+ℜ

=
nnn

nn
c   (12)

and the fractional part ε∆  is estimated as 

cTg =∆̂                                  (13) 

Denote by ε∆∆ −= ppD ˆ  and 
ε∆∆ −= ggD ˆ  the 

estimation errors of the two different fitting models, next 

we compare the magnitudes of them via numerical 

computations. 

A. Results for Gaussian sensor kernels 

(a)

(b) 

Figure 2.  Surfaces (a) 
pE  and (b) 

gE  vs. parameters ν
and β .

When sensor kernels are Gaussian, the CCF )(12 τR  is 

determined by (6) and its shape is controlled by β  and ν .

Normalize 1=T  so that the fractional part of ∆  is 

[ ]5.0,5.0−∈ε∆ . We increase ε∆  from -0.5 to 0.5, and 

sample )1( 012 −ℜ n , )( 012 nℜ  and )1( 012 +ℜ n  from )(12 τR ,

then we compute the two estimates of ε∆ ,
p∆̂  and 

g∆̂ ,

and their estimation errors 
pD  and 

gD . Define the mean 

absolute errors (MAS) of 
p∆̂  and 

g∆̂  as 

∫−=
5.0

5.0
)( εε ∆∆ dDE pp

 and ∫−=
5.0

5.0
)( εε ∆∆ dDE gg

   (14) 

Fig. 2 plots 
pE  and 

gE  as two-dimensional functions 

over ]35.0,05.0[∈ν  and ]10,0(∈β . Clearly, the estimation 

error
pE  is greater than 

gE  in the entire range of ),( βν .

Both 
pE  and 

gE  decrease in ν . However, with the 

increasing of β ,
pE  increases rapidly but 

gE  decreases. 

These observations can be explained as follows. First, a 

smaller ν  makes )(tG  in (5) sharper and closer to a Dirac 

function, so that the shape of )(12 τR  is more like that of 

ν
β

ν
β

IV - 983

➡ ➡



)(τsR , which is an exponential function, due to the 

convolution )()()(12 τττ GRR s ∗= . Thus the fitting error 

between )(12 τR  and parabola/Gaussian function increases 

in ν , so does the MAS 
pE  or 

gE . Second, a larger β
drives )(τsR  closer to a Dirac function, so that that the 

shape of )(12 τR  approaches that of )(tG , which is a 

Gaussian function. Therefore, the fitting error between 

)(12 τR  and Gaussian function decreases in β , whereas the 

fitting error between )(12 τR  and parabola function 

increases. This is the reason why MAS 
pE  and 

gE  have 

opposite trends in β . Finally, as shown in Fig. 2, the 

Gaussian model of the CCF )(12 τR  is more robust than the 

parabola one in time delay estimation. 

B. Results for Box sensor kernels 

Figure 3. The curves of 
pE  (solid) and 

gE  (dashed) 

versus parameter β .

The CCF )(12 τR  for Box kernels is given by (9) and 

its shape is controlled by β  only. Fig. 3 plots the curves of 

pE  and 
gE  versus β  in interval ]20,0( . We see that 

pE

increases in β  and it flattens out when 10>β . In a wide 

range of β ,
gE  is much less than 

pE , and 
gE  becomes 

greater than 
pE  only when 26>β .  In real applications β

is usually small, rarely greater than 10.  A large value of 

β  means the considered process is nearly a white process 

whose ACF is a Dirac pulse. 
gE  reaches its minimum 

around 3.3=β  where 
gE  is almost zero and )(12 τR  can be 

perfectly approximated by a Gaussian function. As β  gets 

larger, the ACF )(τsR  becomes closer to a Dirac function 

so that the shape of CCF )(12 τR  approaches to that of the 

spline function )(tG  in (8). Consequently the fitting error 

between )(12 τR  and the Gaussian function, as well as the 

MAS 
gE , increases in β .

5. CONCLUSION 

Analytic forms of cross correlation functions (CCF) 

were derived and their behaviors were examined for 

stationary processes whose auto-correlation function is 

exponential and for two important types of sensor 

sampling kernels: Gaussian and Box. Under these 

conditions, a Gaussian approximation model of CCF was 

proposed and shown to be more accurate and robust than 

the current parabola-based CCF model in time delay 

estimation.  In these analyses, we supposed that )(12 nℜ  are 

accurate samples of )(12 τR . In practice, )(12 nℜ  are 

nonideal observations of )(12 τR  and the accuracy subjects 

to the level of measurement noises 
iυ  and the sample 

length N . We also performed simulations to test the 

performances of the proposed method on different noise 

level and sample length. (Because of the limitation of 

space, we can not put the detail simulation results in this 

paper.) The results also showed that the Gaussian model is 

more accurate and robust than the parabola CCF model.  
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