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ABSTRACT

In this paper we characterize the error introduced by beamspace

transform when it is applied to Uniform Circular Array (UCA).

Several algorithms for Direction of Arrival (DoA) estimation em-

ploy this modal transform. In particular we focus on the UCA Uni-

tary root-MUSIC algorithm. The performance of such estimator is

degraded and bias occurs especially if the array has a small num-

ber of elements. Here we propose a novel technique for reducing

the bias. This leads to practically bias-free DoA estimates.

1. INTRODUCTION

Circular arrays are of interest in a variety of applications, e.g. in

multiantenna transceivers. Moreover, UCA’s have uniform per-

formance regardless of the angle of arrival and they can estimate

both azimuth and elevation angles simultaneously. Several DoA

estimators for UCA, such as MUSIC, root-MUSIC and ESPRIT

[2]-[3] employ the beamspace transform in order to build a desired

structure of the steering vectors (i.e. the Vandermonde structure)

that is exploited in finding the DoA’s. The beamspace transform

is based on the phase-mode excitation principle [1]. However, the

beamspace transform works properly only under certain conditions

(depending on the number of array elements, radius and interele-

ment spacing) that may be difficult to satisfy in some applications.

For example, when a UCA with a small number of sensors (from

6 to 10 elements) is used, a residual error due to the beamspace

transform leads to biased DoA estimates. Obviously, the Cramer-

Rao Lower Bound (CRB) can not be achieved then.

A qualitative and quantitative analysis of the impact of the

residual term on the signal and noise subspaces can be found in

[4]. The analysis shows that the error may corrupt the DoA esti-

mations by creating an error floor in the performance of algorithms

such as UCA root-MUSIC [2]-[3].

A method for bias reduction was proposed in [5] where an op-

timal mapping from circular to linear manifold is employed. How-

ever, the method needs to split the azimuthal area of 360◦ in sec-

tors of about 30◦ and then process each sector separately.

In this paper we propose a novel approach for removing the

bias on the DoA estimates. This algorithm reduces the bias in

three steps. No subdivision into sectors in the angular domain is

required in the method as in [5]. Moreover, the proposed tech-

nique provides practically an error-free mapping between UCA

and the ULA-like array (virtual array). This can be employed in
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techniques that exploit the Vandermonde structure in steering vec-

tors, e.g., UCA root-MUSIC and spatial smoothing [2]-[3].

This paper is organized as follows. First, the UCA signal

model is presented. In Section 3, the phase-mode excitation prin-

ciple is described. In Section 4, we introduce both the Beamspace

and the Generalized Beamspace Transforms. In Section 5, a novel

technique for bias reduction is proposed. This method significa-

tively improves the performance of algorithms employing rooting

techniques for UCA. In Section 6 simulation results demonstrating

the reduction in bias are shown. Finally, Section 7 concludes the

paper.

2. SIGNAL MODEL

Let us have a Uniform Circular Array of N sensors. There are P
(P < N ) uncorrelated narrow-band signal sources on the array

plane, impinging the array from directions φ1, φ2, . . . , φP (φ is

the azimuth angle). Furthermore we assume that K snapshots are

observed by the array. The N × K element-space array output

matrix may be written:

X = AS + N, (1)

where X is the N ×K element-space data matrix, A is the N ×P
element-space steering matrix, S is the P×K source matrix and N
is the N × K noise matrix. The noise is modelled as a stationary,

second-order ergodic, zero-mean spatially and temporally white

circular complex Gaussian process.

The N ×P element-space steering vector matrix may be writ-

ten as A = [a1(ζ, φ), a2(ζ, φ), . . . , aP (ζ, φ)] where each column

is of the form

ap(ϑ) = [ejζ cos (φp−γ0), ejζ cos (φp−γ1), . . . , ejζ cos (φp−γ(N−1))]T

(2)

for p = 1, 2, . . . , P . Here ϑ = (ζ, φ) and ζ = κr sin θ, r is the

radius, κ = ω
c

is the wavenumber, c is the speed of light, ω = 2πf

is the angular frequency and γn = 2πn
N

(n = 0, . . . N − 1) is the

sensor location. The elevation angle θ is measured down from

the z-axis (assumed to be θ = 90◦) and φ is the azimuth angle

measured counterclockwise from the x-axis.

3. PHASE-MODE EXCITATION PRINCIPLE

The phase-mode excitation principle may be described using two

different array configurations, the continuous and the discrete cir-

cular array (i.e. UCA) [1]-[2]. The principle forms the background

for the Beamspace and Generalized Beamspace Transform.

The continuous array model can not be realized but it repre-

sents the ideal configuration for applying the principle and leads
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to an error-free scenario. By integrating the spatial harmonic of

the array excitation wm(γ) = ejmγ over the continuous circu-

lar array we can compute the normalized far-field pattern resulting

from exciting the aperture with the mth mode as [1]-[2]

fc
m(ϑ) =

1

2π

� 2π

0

wm(γ)ejζ cos(φ−γ)dγ = jmJm(ζ)ejmφ

(3)

where Jm(ζ) is the Bessel function of the first kind of order m.

In case of discrete circular aperture (i.e. UCA) the normalized

far-field pattern resulting from exciting the aperture with the mth

mode is

fs
m(ϑ) =jmJm(ζ)ejmφ +

∞�
q=1

(jgJg(ζ)e−jgφ + jhJh(ζ)ejhφ)

=jmJm(ζ)ejmφ + εm (4)

where εm represents a sum on index q = 1, 2, . . . for defining

the mth excitation mode and the indices g and h are defined as

g = Nq − m and h = Nq + m, respectively.

Eq.(4) is composed of two terms. The first term is known as

the principal term. The other quantity εm, called residual term,

arises from sampling the continuous aperture by N sensors and

represents an error. This higher-order distortion mode has to be

minimized in order to get closer to the ideal (continuous) case [4].

4. BEAMSPACE TRANSFORMS

The beamspace transformation is done by employing a M × N
beamformer FH

e (see [2] for details) as

ae(ϑ) = FH
e a(ϑ) = CvV

Ha(ϑ) ≈
√

NJζd(φ) (5)

where

Cv=diag � j−M , . . . , j−1, j0, j−1, . . . , j−M �
(6)

V=
√

N � w−M

... · · ·
...w0

... · · ·
...w−M � (7)

Jζ=diag � JM (ζ), . . . , J0(ζ), . . . , JM (ζ) �
(8)

d(φ)=[e−jMφ, . . . , e−jφ, 1, ejφ, . . . , ejMφ]T . (9)

The modes that can be excited are m ∈ [−M, M ] and M is com-

puted by considering the smallest integer that is close or equal

to κr. Here we name M = 2M +1 as the total number of excited

modes. The matrices Cv and Jζ are M × M diagonal matrices,

the vector d(φ) has the size M × 1 and diag{·} and (·)H de-

note a diagonal matrix and conjugate transposition, respectively.

It is interesting to note that vector d(φ) is of the form needed in

Vandermonde matrix and it depends on the azimuth angle φ.

Equation (5) shows that the transformation is an approxima-

tion since the last equality holds only when certain conditions are

fulfilled [2]-[4].

The Generalized Beamspace Transform (GBT) extends the ori-

ginal transform [2] so that also the residual error that arises by ap-

plying the beamspace transformation is taken into account. Mathe-

matically it can be written (see [4] for details) as

ae(ϑ)=FH
e a(ϑ)

=CvV
Ha(ϑ) =

√
NJζd(φ) +

√
NCvε

=
√

NJζ � d(φ) + ∆d1(φ) + O(∆d2(φ)) � (10)

where ∆d1(φ) = J−1
ζ Cvε(1) with ε(1) = [ε

(1)
−M , . . . , ε

(1)
M ]T .

Here ε(1) is defined according to eq.(4) for q = 1 and O(∆d2(φ))

contains all the remaining terms of the sum ε(q) for q ∈ [2, +∞].
Consequently, we can now decompose the UCA beamspace

steering vector to a sum of three vectors: d(φ) is the steering vec-

tor of the virtual array with Vandermonde structure, ∆d1(φ) is

an additive perturbation with angular dependence on the nominal

value of d(φ) and O(∆d2(φ)) includes the remaining error which

can be neglected without any loss of generality because the discus-

sion can be extended.

As a result we can now consider the residual error of the beam-

space transformation as a perturbation in the element positions of

the true virtual array d(φ). Therefore, the virtual array resulting

from applying the beamspace transformation, can be considered

to be an uncalibrated array with a misplacement of the element

position proportional to the residual error ∆d(φ) = ∆d1(φ).

The residual error then introduces a bias into the DoA esti-

mates regardless of the method we apply. Therefore, reducing the

bias in the DoA estimates requires a method for reducing the resid-

ual error in advance or a procedure for calibrating the virtual array.

The bias in the DoA estimates is depicted in Fig.1. It is in-

teresting to notice that the bias depends on the array configuration

(either even or odd number of elements, array radius,...) and it also

depends on the angle of arrival. For more details on the impact of

the array configuration, see [4]-[6].
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Fig. 1. MSE as function of the DoA’s computed with UCA Uni-

tary root-MUSIC when different number of sensors are used. The

contribution of bias2 to MSE is clearly visible due to high SNR.

Settings: K = 500 snapshots, SNR=50 dB and interelement spac-

ing d = 0.3λ. Note that array with odd number of elements has

lower bias.

5. ALGORITHM FOR BIAS REDUCTION

In this section we first derive the two beamformers able to syn-

thetize the dominant term of the residual error (for q = 1), see

eq.(4) and (10). Hence we employ them in our novel technique

that in only three steps can perform bias removal on the DoA’s.

The proposed technique can be seen as a calibration proce-

dure that first computes the calibration error and then modifies the

original beamformer FH
e for compensating the error itself.

The Generalized Beamspace Transform defined in Section 4

provides an expression of the residual errors
√

NCvε(1). In order

to derive the two new beamformers FH
e1 and FH

e2, we define the
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term ε(1) as sum of two terms ε(1) = ε
(1)
1 + ε

(1)
2 where each

component can be explicitly expressed for m < |M | as [6]

ε
(1)
1 =

���������
j(N+M)J(N+M)(ζ)e−j(N+M)φ

...

jNJN (ζ)e−jNφ

...

j(N−M)J(N−M)(ζ)e−j(N−M)φ

� �������� (11)

ε
(1)
2 =

���������
j(N−M)J(N−M)(ζ)ej(N−M)φ

...

jNJN (ζ)ejNφ

...

j(N+M)J(N+M)(ζ)ej(N+M)φ

� �������� . (12)

We start by considering the continuous circular aperture case

and, similarly to eq.(3), we define the normalized far-field pat-

terns resulting from exciting the aperture with the mode w
(1)
m (γ) =

ej(m−N)γ as

j(N−m)J(N−m)(ζ)e−j(N−m)φ =
1

2π

� 2π

0

ejζ cos(φ−γ)ej(m−N)γdγ

(13)

and w
(2)
m (γ) = ej(N+m)γ as

j(N+m)J(N+m)(ζ)ej(N+m)φ =
1

2π

� 2π

0

ejζ cos(φ−γ)ej(N+m)γdγ.

(14)

The detailed derivation of equations (13)-(14) as well as a practical

numerical evaluation of the same integrals can be found in ref.[6].

However, under an implementation point of view, the above inte-

grals can be numerically evaluated on Q = 24 points as [6]

1

Q

Q−1�
q=0

ejζ cos(φ−γq)ej(m−N)γq =

=j(N−m)J(N−m)(ζ)e−j(N−m)φ + O(||γ2
q ||) (15)

1

Q

Q−1�
q=0

ejζ cos(φ−γq)ej(N+m)γq =

=j(N+m)J(N+m)(ζ)ej(N+m)φ + O(||γ2
q ||) (16)

where γ = 2πq
Q

for q = 0, . . . , Q − 1 and O(||γ2
q ||) are small

terms that can be neglected without any consequences.

Equations (13)-(14), as well as eq.(15)-(16), allow us to find

a closed-form expression of the dominant term (for q = 1) of the

residual error after the beamspace transform is applied, see eq.(4).

Observe that for m ∈ [−M, M ] the equations describe the vectors

in equations (11) and (12).

Let us assume that we have successfully evaluated the integrals

in (13)-(14), the general idea in the algorithm for bias reduction is

the following. The proposed algorithm proceeds in three steps:

use the conventional beamspace transform for mapping the data

from the element-space to the beamspace domain. Then compute

the residual error through the introduction of two new beamform-

ers, FH
e1 and FH

e2. Finally correct the original beamformer FH
e by

subtracting the new beamformers from the original one.

The N × K element-space data matrix X is mapped into the

M× K beamspace data matrix Y by using the beamspace trans-

form [2]-[3]. Combining equations (1), (10)-(12) we can write

Y=FH
e X = FH

e AS + FH
e N (17)

= � √NJζd(φ) +
√

NCvε(1) 	 S + FH
e N (18)

= � √NJζd(φ) 	 S +
√

NCv � ε(1)
1 + ε

(1)
2

	 S + FH
e N (19)

in which the two terms � √NCvε
(1)
1

	 S and � √NCvε
(1)
2

	 S re-

lated to the residual term of the beamspace transform have been

rewritten separately. The term � √NJζd(φ) 	 S forms the ideal

beamspace data matrix given as a product of the ideal steering vec-

tor with Vandermonde structure d(φ) and the signal S. Moreover

the noise term FH
e N is still a complex circular Gaussian process

since the beamformer matrix FH
e is unitary.

Our goal is to remove � √NCvε
(1)
1

	 S and � √NCvε
(1)
2

	 S
from eq.(19) because they cause the bias in the DoA estimates.

Clearly we do not know the terms since the signal matrix S is

not known. An alternate solution is to construct two other beam-

formers FH
e1 and FH

e2 in order to synthesize the bias term and then

simply cancel it out. The two new beamformers are computed as

follows

FH
e1A=

√
NCvε

(1)
1 (20)

FH
e2A=

√
NCvε

(1)
2 . (21)

The minimum-norm solution to (20)-(21) which defines the beam-

formers can be found as

Fe1=A†√Nε
(1)H
1 CH

v (22)

Fe2=A†√Nε
(1)H
2 CH

v (23)

where A is the UCA element-space steering matrix with left pseudo-

inverse A† = A � AHA 	 −1
and Cv is defined in eq.(6). No-

tice that A can not be directly computed because it would require

knowledge of the DoA’s. Equations (22)-(23) are computed using

an estimated steering matrix AR. For more details see Table 1.

At this point we can form the M×K correction data matrices

Ỹ1 and Ỹ2 as

Ỹ1=FH
e1X = � √NCvε

(1)
1

	 S + FH
e1N (24)

Ỹ2=FH
e2X = � √NCvε

(1)
2

	 S + FH
e2N (25)

where X is the N × K UCA element-space data matrix.

The bias cancellation is performed by substituting the original

beamspace data matrix Y by the two correction data matrices Ỹ1

and Ỹ2. Mathematically we have

Ŷ=Y − Ỹ1 − Ỹ2 = � FH
e − FH

e1 − FH
e2

	 X (26)

= � √NJζd(φ) 	 S + � FH
e − FH

e1 − FH
e2

	 N (27)

where
√

NJζd(φ) is the ideal steering vector of the virtual array

with Vandermonde structure. Notice that the matrix � FH
e −FH

e1 −
FH

e2
	

is close to unitary because the norms of FH
e1,F

H
e2 are very

small. Therefore we can say the statistics of the noise does not

change significantly and we can still consider the noise to be a

complex circular Gaussian process. Table 1 summarizes the novel

technique for bias removal.
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Table 1. Algorithm for bias reduction

Step 1: Form the array observation matrix X as in eq.(1),

a) compute the initial beamspace data matrix Y as

Y = FH
e X

b) estimate the initial set of DoA’s by using UCA root-

MUSIC algorithm [2]-[3]

Step 2: with the initial DoA’s computed on step 1

c) evaluate eq.(13)-(14) by using the approximation in

(15)-(16) and form ε
(1)
1 and ε

(1)
2 as in (11)-(12),

d) form the estimated steering matrix AR as in (2),

e) compute the beamformers FH
e1 and FH

e2 by using

equations (22)-(23),

f) compute the new beamspace data matrix Ỹ starting

from the initial observation matrix X as in eq.(26),

g) using UCA root-MUSIC algorithm [2]-[3], estimate

the second set of DoA’s.

Step 3: using the DoA’s computed on step 2

h) repeat points (c), (d), (e) and (f),

i) estimate the DoA’s by using the UCA root-MUSIC

algorithm [2]-[3]

6. SIMULATION RESULTS

In this sections some simulation results are presented. They clearly

demonstrate how the bias in the DoA estimates is reduced such that

no error floor occurs and variance close to CRB is achieved.

In Fig.2 we illustrate the reduction in the RMS error by using

the UCA Unitary root-MUSIC algorithm [3] during each of the

three steps. The original DoA estimates are significantly biased

and clear error floors are visible in the figure. After the second

step the error floors get lowered indicating that the bias is reduced.

Finally, after the third step the bias is practically completely re-

moved. In fact, the RMS curves are parallel to the CRB but the

CRB is not reached since the beamspace transform adds extra vari-

ance on the DoA estimates [4].

In Fig.3 we depict the RMS error of UCA Unitary root-MUSIC

using the bias cancellation technique proposed in this paper in

comparison to a conventional method.

7. CONCLUSIONS

In this paper we derived an algorithm for removing the bias in

the DoA estimates. Bias occurs as a consequence of applying

the beamspace transform when using a UCA with a small num-

ber of sensors. Practically bias-free performance is achieved. The

beamspace transform, however, adds extra variance to the esti-

mates which explains the gap to the CRB.
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Fig. 2. Cancelling steps for: the original UCA Unitary root MU-

SIC algorithm, after the second step and after the third step. Set-

tings: N = 8, r = λ
2.6

, K = 256 and (φ1, φ2) = (15◦, 25◦).The

bias is removed but excess variance remains.
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Original UCA Unitary root−MUSIC, source 1
Original UCA Unitary root−MUSIC, source 2
Bias−Corrected UCA Unitary root−MUSIC, source 1
Bias−Corrected UCA Unitary root−MUSIC, source 2
Stochastic CBR

Fig. 3. Performances of the UCA Unitary root-MUSIC. Settings:

N = 8, r = λ
2.6

, SNR=50 dB and (φ1, φ2) = (10◦, 15◦). The

bias is reduced but the CRB is not attained because of the addi-

tional variance.
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