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ABSTRACT

In this paper we consider fundamental limitations for DOA
estimation with arbitrary lossless antennas or antenna arrays
inserted inside a sphere. Spherical vector modes and their
associated equivalent circuits and Q factor approximations
are employed as a general framework for the analysis. The
classical broadband matching theory by Fano is extended to
a general multiport S–parameter model of the antennas and
fundamental bounds are given for the scattering parameters
with respect to bandwidth and electrical size of the sphere.
Finally, assuming a statistical signal model with Gaussian
receiver noise, the Cramer–Rao lower bound is used to de-
rive fundamental upper bounds for the performance of DOA
estimation by a sphere.

1. INTRODUCTION

The Direction of Arrival (DOA) estimation using antenna
arrays has been the topic for research in array and statistical
signal processing over several decades and comprises now
well developed modern techniques such as maximum likeli-
hood and subspace methods, see e.g. [1] and the references
therein. Recently, there has been an increased interest in
incorporating properties of electromagnetic wave propaga-
tion with the statistical signal estimation techniques used for
sensor array processing and there are several papers dealing
with direction finding using electromagnetic vector sensors
and diversely polarized antenna arrays, tripole arrays, etc.
see e.g. [2].

The drawback of small antennas as being narrowband
and lossy are well known [3, 4], and the same will of course
be true for an array of antennas confined within a given vol-
ume. To analyze the estimation performance of a volume,
it is essential to relate three classical theories giving fun-
damental limitations in the disciplines estimation theory,
antenna theory and broadband matching [5]. Assuming a
Gaussian signal model for the receiver noise, the Cramer–
Rao bound [6] can be used as a performance measure for the
estimation. The classical theory of radiating Q uses spheri-
cal vector modes and equivalent circuits to analyze the prop-
erties of a hypothetical antenna inside a sphere, c.f. [3, 4, 7].

2. SIGNAL MODEL FOR RECEIVING ANTENNAS

We consider the electromagnetic field which is propagated
into free space when the transmitting antennas (all sources)
are contained inside a sphere of radius r = a. Let k = ω/c
denote the wave number, ω = 2πf the frequency, and c and
η the speed of light and the wave impedance of free space,
respectively. The transmitted electric field, E(r) can then
be expanded in outgoing spherical vector waves uτml(kr)
as [8]

E(r) =
∞∑

l=1

l∑
m=−l

2∑
τ=1

fτmluτml(kr) (1)

where fτml are the expansion coefficients. Here τ = 1
corresponds to a transversal electric (TE) wave and τ =
2 corresponds to a transversal magnetic (TM) wave. The
other indices are l = 1, 2, . . . ,∞ and m = −l . . . , l where
l denotes the order of that mode.

It can be shown that in the far field when r → ∞, the
electric field is given by E(r) = e−ikr

kr F (r̂) where F (r̂) is
the far field amplitude given by

F (r̂) =
∞∑

l=1

l∑
m=−l

2∑
τ=1

il+2−τfτmlAτml(r̂) (2)

and Aτml(r̂) denotes the spherical vector harmonics [8].
Furthermore, it can also be shown that the total power Ps

transmitted by the antenna can be expressed in terms of the
expansion coefficients as

Ps =
1

2ηk2

∞∑
l=1

l∑
m=−l

2∑
τ=1

|fτml|2. (3)

Next, we assume that the antenna is lossless and can be
modeled using a normalized multiport where a finite num-
ber of modes M is employed. As was originally described
by Chu in [3], an arbitrary antenna inside a sphere of ra-
dius a can be modeled using a coupling network connecting
independent equivalent circuits representing each spherical
mode. The propagated power for each mode is represented
by the power loss over the terminating resistance η and the
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wave impedance as seen by the spherical mode at radius a
is equal to the input impedance of the equivalent circuit for
all frequencies.

Let x+
i and x−

i denote the incident and reflected volt-
ages at the antenna waveguide connections for i = 1, . . . , N
where N is the number of antenna ports. These voltages are
normalized so that the power delivered to a particular an-

tenna port is |x+
i |2
2η and the corresponding reflected power is

|x−
i |2
2η . For simplicity, we assume that the transmission line

characteristic impedance is the same as the wave impedance
η of free space. Each antenna port may be connected to a
lossless matching network in which case y+

i and y−
i denote

the wave amplitudes at the antenna waveguide connections.
We let the equivalent voltage fα

ηk represent the propa-
gated wave amplitude where fα denotes the expansion co-
efficients for the spherical vector waves as in (1). Here,
the multi–index α = (τ,m, l) is chosen to simplify the
notation. The multiport model is normalized to the wave
impedance η and the totally transmitted power for each mode
is thus equal to 1

2ηk2 |fα|2 as in (3). The total voltage at each
antenna port is denoted yi, and the normalized equivalent
voltage at the input of the TE or TM equivalent circuit is
denoted by zα/η, which is proportional to the transversal
components of the electromagnetic field at radius a of the
sphere [3, 8].

It is assumed that the relation between incident and re-
flected wave quantities can be represented by a scattering
matrix as(

z−

y−

)
=

(
S11 S12

S21 S22

) (
z+

y+

)
= S

(
z+

y+

)
(4)

where the matrix S is assumed to be lossless (SHS = I) and
reciprocal (S = ST ). Furthermore, we have the following
scattering parameters(

f−

z+

)
=

(
Γ′

1 T′

T′ Γ′
2

) (
f+

z−

)
(5)

and (
y+

x−

)
=

(
Γ′′

1 T′′

T′′ Γ′′
2

) (
y−

x+

)
(6)

related to the equivalent circuits and to the matching net-
works, respectively. All reflection and transmission matri-
ces Γ and T are diagonal.

By solving (4) through (6) for f− and x− when f+ and
x+ are given, we get the total scattering matrix(

f−

x−

)
=

(
S̄11 S̄12

S̄21 S̄22

) (
f+

x+

)
= S̄

(
f+

x+

)
(7)

where

S̄11 = Γ′
1 + T′K−1

(
S11 + S12Γ′′

1M
−1S21

)
T′ (8)

S̄12 = T′K−1S12

(
I + Γ′′

1M
−1S22

)
T′′ (9)

and

K = I − S11Γ′
2 − S12Γ′′

1M
−1S21Γ′

2 (10)

M = I − S22Γ′′
1 . (11)

We note that the normalized multiport model described
above can be interpreted as a vector two–port model which
generalizes the well known result for M = N = 1, S11 =
S22 = 0, S21 = S12 = 1, and hence

S̄11 = Γ′
1 +

T ′2Γ′′
1

1 − Γ′′
1Γ′

2

(12)

S̄12 =
T ′T ′′

1 − Γ′′
1Γ′

2

(13)

cf. e.g. [5]. Here |S̄11|2 + |S̄21|2 = 1 and S̄21 = S̄12.
Next, we derive the multiport scattering model for re-

ceiving antennas by considering the reciprocity theorem.
On transmission the transmitted wave field f− is given by
f− = S̄12x+. Thus, if we consider the transmitted wave
field fα due to one single input terminal with the incident
voltage wave x+

i , we get the output fα = k
[
S̄12

]
α,i

x+
i .

Now, from the antenna reciprocity theorem [9] we have

x−
i x+

i = −i
λ2

2π
F (k̂0) · E0 (14)

where E0 is the complex vector amplitude of an incoming
plane wave from direction k̂0 and x−

i the corresponding re-
ceived signal. Further, F (r̂) is the far field amplitude corre-
sponding to the transmitted signal x+

i . Hence, by using (2)
the received signal is obtained from the reciprocity theorem
(14) as

x− =
2π

k
S̄21AE (15)

where A is an M × 2 matrix where each row corresponds
to the spherical components of the spherical vector harmon-
ics il+1−τAα(k̂0), and E is an 2 × 1 vector containing the
corresponding signal components of the electric field E0.

Now, from (15), a complex baseband model for the re-
ceived signal is given by

x(t) =
2π

k
S̄21AE + n(t) (16)

where n(t) is white complex Gaussian noise with covari-
ance matrix σ2

nI. We consider a situation where the re-
ceived electric field is monochromatic and completely po-
larized. We assume a narrowband signal model where k
corresponds to the carrier frequency ω0 and the fractional
bandwidth B = ∆ω

ω0
is reasonable low. Here ∆ω denotes

the absolute bandwidth and σ2
n = N0ω0B where N0 is the

spectral density of the Gaussian process.
We are interested in the estimation accuracy of the spher-

ical DOA parameters θ and φ which we write as a vector
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parameter ξ = [θ φ]T . The Fisher Information matrix [6]
becomes

[I(ξ)]ij =
8π2

σ2
nk2

Re
{
pH

i S̄H
21S̄21pj

}
(17)

where

pi =
∂

∂ξi
{AE} . (18)

Now, the variance of each parameter is bounded as

var
{

ξ̂i

}
≥ [

I−1(ξ)
]
ii
≥ 1

[I(ξ)]ii
(19)

where [I(ξ)]ii is given by

[I(ξ)]ii =
8π2

σ2
nk2

pH
i S̄H

21S̄21pi (20)

which is real and nonnegative. Since S̄ is lossless we have
S̄H

21S̄21 + S̄H
11S̄11 = I and the eigenvalues of S̄H

21S̄21 are in
the interval [0, 1]. It is therefore concluded that

[I(ξ)]ii ≤
8π2

σ2
nk2

pH
i pi. (21)

Hence, var
{

ξ̂i

}
in (19) is bounded below by

var
{

ξ̂i

}
≥ 1

[I(ξ)]ii
≥ k2N0ω0

8π2
Fa (22)

where we have defined the accuracy factor for general an-
tennas

Fa =
B

pH
i pi

. (23)

We note also that for the idealized mode–coupled an-
tenna where S̄11 is diagonal, the CRLB expression (20)
can be calculated when the reflection coefficients |Γj |2 are
known

[I(ξ)]ii =
8π2

σ2
nk2

pH
i

(
I − S̄H

11S̄11

)
pi. (24)

The final bound for var
{

ξ̂i

}
in (19) becomes

var
{

ξ̂i

}
≥ 1

[I(ξ)]ii
=

k2N0ω0

8π2
FCRLB

a (25)

where the Cramer–Rao lower bound accuracy factor is

FCRLB
a =

B

pH
i diag [1 − |Γj |2]pi

. (26)

3. BROADBAND FANO–THEORY FOR THE
MULTIPORT MODEL

In this section we show that some of the important theo-
retical limitations for two–port broadband matching of arbi-
trary impedances as given by Fano in [5], can be generalized
to the multiport model described in the previous section.

Consider the scattering matrix S̄11 given in (8) and as-
sume that the diagonal elements T ′

j of the transmission co-
efficient T′ has a common zero at s = 0 with multiplicity n.
Denote the diagonal elements of S̄11 by Γj and the elements
of Γ′

1 by Γ′
j . The Taylor series expansion of the logarithm

of the diagonal elements Γj about s = 0 can then be written

log
1
Γj

= A1s+· · ·+A2k+1s
2k+1+· · ·+A2n−1s

2n−1+· · ·
(27)

where even order coefficients up to and including 2n−2 are
zero, and the odd coefficients A2k+1 are independent of the
matching network (Γ′′

1 , Γ′′
2 , T′′) for k = 0, 1, . . . , n − 1.

These facts can be established by following the derivation
in [5] using (8) and noting that s = 0 is a common zero of
T′ of multiplicity n. By employing the calculus of residues,
integral relations are then obtained as in [5] that relate the
reflection coefficient Γj (over bandwidth B) to the zeros s′oi

and poles s′pi of Γ′
j .

In theory, the equivalent circuits can be used to derive
a Fano limit for any TE or TM mode. However, instead of
using the analytic expressions of the impedance it is com-
mon to use the Q factor to get an estimate of the band-
width [3, 4, 7]. At and around the resonance frequency,
ω0 = 2πf0, the antenna model is given by a resonance cir-
cuit. The resonance circuit is either a series RCL circuit
with capacitance 1

Qω0
and inductance Q

ω0
, or a parallel cir-

cuit with these values switched. The transmission coeffi-
cients T ′

j(s) for the Q factor resonance circuits have a sin-
gle zero at s = 0 and a single zero at s = ∞ (common for
all modes). The reflection coefficients Γ′

j(s) have zeros at

s′oi = ±iω0 and poles s′pi = ω0
Q (−1 ± i

√
Q2 − 1).

By assuming a constant reflection coefficient |Γj | over
the bandwidth [ω0 − ω0

B
2 , ω0 + ω0

B
2 ] and introducing the

constant K = 2
π log 1

|Γj | , the two integrals in [5] for k = 0
become

KB

1 − B2/4
=

2
Q

− 2
∑ ω0

sri
(28)

KB =
2
Q

− 2
∑ sri

ω0
(29)

where sri are the zeros of Γj in the right half–plane.
We can see that these equations can be satisfied by one

complex conjugated pair sri and s∗ri as follows. Let sri

ω0
=

x + iy, then Re
{

sri

ω0

}
= x and Re

{
ω0
sri

}
= x

x2+y2 . Since

KB < KB/(1 − B2/4), the equations can be satisfied
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by letting y → ∞ and then chosing a suitable x > 0.
Hence, the relation (28) gives an inequality which is a great-
est lower bound for |Γj |

|Γj | ≥ e−
π
Q

1−B2/4
B . (30)

4. NUMERICAL EXAMPLES

In Fig. 1 is shown the optimum reflection coefficient |Γj |
for the first 3 mode orders n = 1, 2, 3 as a function of the
electrical size ka when B = 0.01. For a given bandwidth
B, all modes will ultimately be useless (useful), i.e. |Γ| will
approach unity (zero) as the electrical size ka decreases (in-
creases). For a given electrical size ka, there is always a
certain limited number of modes that are useful with |Γ|
significantly less than unity.

In Fig. 2 is shown the accuracy factor Fa and FCRLB
a for

DOA estimation given in (23) and (26) (with ξ = θ and θ =
0) for the first 3 mode orders n = 1, 2, 3, as a function of the
electrical size ka when B = 0.01. As the electrical size ka
decreases, the accuracy of DOA estimation is determined
by a decreasing number of modes. In this example with
B = 0.01, it is sufficient to consider 3 mode orders for
ka = 1, 2 mode orders for ka = 0.5 and 1 mode order for
ka = 0.1.
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Fig. 1. Optimum reflection coefficient |Γj | for the first 3
mode orders n = 1, 2, 3 as a function of electrical size ka.
Fractional bandwidth is B = 0.01. Solid line: n = 3.
Dashed line: n = 2. Dotted line: n = 1.
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