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ABSTRACT
A new computationally efficient subspace-based algorithm
is proposed for estimating and tracking the directions of co-
herent narrowband signals impinging on a uniform linear
array (ULA). Specifically the null space is estimated using
the least-mean-square (LMS) or normalized LMS (NLMS)
algorithm, and the directions are updated using the approx-
imate Newton method. By studying the convergence analy-
ses of the LMS and NLMS algorithms, where the “weight”
is in the form of a matrix and there is a correlation between
the “additive noise” and “input data” in the updating equa-
tion, the step-size stability conditions are derived explicitly.
Further the tracking of crossing directions of moving signals
is considered. The theoretical analyses and effectiveness of
the proposed algorithm are verified.

1. INTRODUCTION

Although subspace-based methods have been extensively
studied for direction-of-arrival (DOA) estimation because
of their high resolution and computational simplicity, the
heavy computational load of eigendecomposition which is
usually required for subspace estimation makes subspace-
based methods difficult to implement in an on-line man-
ner. Recently some computationally simple subspace-based
methods such as the BEWE [1], OPM [2], and SWEDE [3]
have been proposed for estimating the directions of narrow-
band signals efficiently, where the need for computation of
eigendecomposition is avoided, and the exact signal/noise
subspace is obtained from the array data based on a parti-
tion of the array response matrix. Additionally the on-line
implementations of the SWEDE and PASTd [8] were con-
sidered [3], [4]. However, the performance of these meth-
ods degrades severely when the incident signals are coher-
ent (i.e., fully correlated), and/or the signal-to-noise ratio
(SNR) is low. By exploiting the array geometry of a uniform
linear array (ULA) and its shift-invariance property, we pro-
posed a subspace-based method without eigendecomposi-
tion (SUMWE) with good performance in batch mode [5].

This paper investigates a new on-line algorithm for es-
timating and tracking the coherent signals impinging on a
ULA based on the SUMWE, where the least-mean-square
(LMS) or normalized LMS (NLMS) algorithm is used for
the null space estimation, and the approximate Newton it-
eration method is used to update the direction finding. The
proposed algorithm has the reduced computational load and

a remarkable insensitivity to the correlation of signals. By
analyzing the transient behaviors of the LMS and NLMS al-
gorithms, where the “weight” is in the form of a matrix and
there is a correlation between the “additive noise” and “in-
put data” that involve the instantaneous correlations of the
received array data, the step-sizes that guarantee the mean
and mean-square stabilities are derived. Further the track-
ing of crossing directions is considered by introducing a
dynamic model of the incident directions. The theoretical
analyses and effectiveness of proposed algorithm are sub-
stantiated through numerical examples.

2. DATA MODEL AND BASIC ASSUMPTIONS

Consider a ULA of M identical and omnidirectional sen-
sors with adjacent spacing d and assume that p (p < M/2)
narrowband signals {si(t)} are in the far-field and impinge
from distinct directions {θi(t)}. The received signal ym(t)
at the mth sensor is given by

ym(t) =
p∑

i=1

si(t) ejω0(m−1)τ(θi(t)) + wm(t) (1)

where wm(t) is the additive noise, ω0 = 2πf0, τ(θi(t)) =
(d/c) sin θi(t), and c and f0 are the propagation speed and
center frequency. Then we have a compact data model

y(t) = A(θ(t))s(t) + w(t) (2)

where y(t), s(t), and w(t) are the vectors of the received
signals, incident signals, and additive noise, and A(θ(t))
is the array response matrix given by A(θ(t)) = [a(θ1(t)),
· · · , a(θp(t))], where A(θ(t)) is unambiguous, and a(θi(t))
= [1, ejω0τ(θi(t)), · · · , ejω0(M−1)τ(θi(t))]T .

Here {si(t)} are coherent signals and expressed as si(t)
= βis1(t) for i = 1, 2, · · · , p, where {βi} are the atten-
uation coefficients with βi �= 0 and β1 = 1, and s1(t)
is a temporally complex white Gaussian random process
with zero-mean and the variance given by E{s1(n)s∗1(t)} =
rsδn,t and E{s1(n)s1(t)} = 0, while wm(t) is a tempo-
rally and spatially complex white Gaussian random pro-
cess with zero-mean and the covariance matrix given by
E{wm(n)w∗

k(t)} = σ2δm,kδn,t and E{wm(n)wk(t)} = 0,
where E{ · }, ( · )∗, and δn,t denote the expectation, com-
plex conjugate, and Kronecker delta. The additive noise
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{wm(t)} are uncorrelated with the signals {si(t)}, and the
number of signals p is known or has been estimated.

For tracking the time-varying directions, we assume that
θi(t) is slowly time-varying (relative to the sampling rate
1/Ts [3]) so that θi(t) ≈ θi(nT ) for t ∈ [nT, (n + 1)T )
and n = 0, 1, · · · and that N snapshots of array data are
available over an interval T of parameter updating, i.e., T =
NTs. Hence the direction tracking is formulated as the esti-
mating θi(n) for n = 0, 1, · · · from N snapshots of {y(k)}
measured at k = nN, nN+1, · · · , (n+1)N−1 while main-
taining the correct association between θi(n) and θi(n−1).

3. ADAPTIVE DOA ESTIMATION AND TRACKING

3.1. Direction Estimation without Eigendecomposition

By defining Ā and A1 be the submatrices of A(θ(t)) in (2)
consisting of the first M − p and p rows, since M > 2p, we
can partition Ā into two parts as [2], [5]

Ā =
[

A1

A2

]}p

}M−2p
. (3)

As these matrices have full column ranks, the rows of A2

can be expressed as a linear combination of that of A1 [5]

P HA1 = A2 i.e., QHĀ = O(M−2p)×p (4)

where P is a linear operator (i.e., “weight” hereafter), and
Q = [P T ,−IM−2p]T , while Om×q, Im, and (·)H denote
the m× q null matrix, m× m identity matrix, and the Her-
mitian transpose. Clearly the columns of Q form a basis
for the null space of Ā

H
, and {θi(n)} can be estimated by

minimizing the cost function [5]

f(θ) = āH(θ)ΠQ ā(θ) (5)

where ā(θ) = [1, ejω0τ(θ), · · · , ejω0(L−2)τ (θ)]T , and ΠQ =
Q(QHQ)−1QH .

3.2. Null Space Estimation with LMS/NLMS Algorithm

By dividing the array into L overlapping subarrays with p
sensors forwards and backwards and by defining the sig-
nal vectors of the lth forward and backward subarrays as
yfl(k) = [yl(k), yl+1(k), · · · , yl+p−1(k)]T and ybl(k) =
[yM−l+1(k), yM−l(k), · · · , yL−l+1(k)]H , we obtain four in-
stantaneous Hankel correlation matrices at the instant k [6]

Φf (k) = Y f (k)y∗
M (k), Φ̄f (k) = Ȳ f (k)y∗

1(k) (6)

Φb(k) = Y b(k)y1(k), Φ̄b(k) = Ȳ b(k)yM (k) (7)

where Y f (k)=[yf1(k), · · ·, yfL−1(k)]T , Ȳ f (k)=[yf2(k),
· · ·, yfL(k)]T , Y b(k) = [yb1(k), · · ·, ybL−1(k)]T , Ȳ b(k) =
[yb2(k), · · ·, ybL(k)]T , and L = M − p + 1. From (3), the
(M − p) × p matrices in (6) and (7) can be parted into the
p × p and (M − 2p) × p submatrices in the downward di-
rection (e.g., Φf (k) = [ΦT

f1(k),ΦT
f2(k)]T ), and we get [6]

Φ2(k) = P HΦ1(k) + EH
o (k) (8)

where Φ1(k) = [Φf1(k), Φ̄f1(k),Φb1(k), Φ̄b1(k)], Φ2(k)
= [Φf2(k), Φ̄f2(k),Φb2(k), Φ̄b2(k)], Eo(k) = −GHQ,
G = [y∗

M (k)W f , y∗
1(k)W̄ f , y1(k)W b, yM (k)W̄ b], W f

=[wf1(k), · · ·,wfL−1(k)]T, W̄ f =[wf2(k), · · ·, wfL(k)]T,
W b = [wb1(k), · · · , wbL−1(k)]T , W̄ b = [wb2(k), · · · ,
wbL(k)]T , wfl(k) = [wl(k), · · · , wl+p−1(k)]T , and wbl(k)
= [wM−l+1(k), · · · , wL−l+1(k)]H .

Thus we easily obtain the LMS and NLMS algorithms
for updating P (k) respectively [6]

P (k) = P (k − 1) + µΦ1(k)E(k) (9)

P (k) = P (k − 1) + µ̄ inv{R̃}Q̃H
Φ1(k)E(k) (10)

where E(k) = ΦH
2 (k) − ΦH

1 (k)P (k − 1), Q̃ and R̃ are
the unitary and upper-triangular matrices of the QR decom-
position of Φ1(k)ΦH

1 (k), µ and µ̄ are the LMS and NLMS
positive step-sizes, and inv{·} denotes the inversion opera-
tion of the bracketed matrix with a simple back-substitution.
From (9) or (10), then the instantaneous orthogonal projec-
tor Π(k) of ΠQ in (5) is obtained [5], [6]

Π(k) = Q(k)(IM−2p − P H(k)inv{R̄}Q̄H
P (k))QH(k)

(11)

where Q̄ and R̄ are the unitary and upper-triangular matri-
ces of the QR decomposition of P (k)P H(k) + Ip.

3.3. Direction Finding with Newton Iteration Method

Now by considering the Taylor series expansion of f(θ) in
(5) and by using (11), we get the approximate Newton iter-
ation formula for direction updating [5], [6]

θ̃i(n) = θ̂i(n − 1) − Re{d̄H(θ)Π(n)ā(θ)}
d̄

H(θ)Π(n)d̄(θ)

∣∣∣∣∣
θ=θ̂i(n−1)

(12)

where d̄(θ) = jω0(d/c) cos θ[0, ejω0τ(θ), 2ej2ω0τ(θ), · · · ,
(L − 2)ejω0(L−2)τ (θ]T , and Π(n) = Π(k)|k=(n+1)N−1.

3.4. Tracking of Crossing Directions with Luenberger
Observer

By letting the angular velocity and acceleration of the di-
rection θi(n) at the instant n be θ̇i(n) and θ̈i(n) and denot-
ing the corresponding state vector as xi(n) = [θi(n), θ̇i(n),
θ̈i(n)]T , in the absence of process and measurement noises,
we have the dynamics and measurement equations of θi(n)

xi(n + 1) = Fxi(n), θi(n) = cT xi(n) (13)

where F and c are the transition matrix and measurement
vector given by F = [1, T, 0.5T 2; 0, 1, T ; 0, 0, 1] and c =
[1, 0, 0]T . Here the estimate θ̃i(n) obtained by (12) is treated
as the “measurement”, then the estimate x̂i(n|n) of the state
of this dynamical system is obtained

x̂i(n|n) = F x̂i(n − 1|n − 1)

+ gi(θ̃i(n) − cT x̂i(n − 1|n − 1)) (14)
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where gi is called the observer gain.
Further from (13) and (14), we get the recursion of the

predicted state-error vector of xi(n) at the instant n

ξi(n) = (F − gic
T )ξi(n − 1) (15)

where ξi(n) = xi(n) − x̂i(n|n). Obviously if and only if
the magnitudes of all eigenvalues of the matrix F − gic

T

are strictly less than one, then ξi(n) → 0 as n → ∞. Here
this convergence condition can be satisfied by designing the
observer gains {gi} with the pole assignment.

3.5. On-Line Implementation of Algorithm
1) Predict the directions by using (13) as x̂i(n|n − 1) =

F x̂i(n − 1|n − 1) and θ̂i(n|n − 1) = cT x̂i(n|n − 1).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 flops

2) With the N snapshots of {y(k)}(n+1)N−1
k=nN , calculate the

correlation vectors ϕ(k) between y(k) and y∗
M (k) and

ϕ̄(k) between y(k) and y∗
1(k) as

ϕ(k) = y(k)y∗
M (k), ϕ̄(k) = y(k)y∗

1(k) (16)

where ϕ(k) = [r̂1M (k), · · · , r̂MM (k)]T , and ϕ̄(k) =
[r̂11(k), · · · , r̂M1(k)]T , and form the Hankel matrices
Φf (k), Φ̄f (k), Φb(k), and Φ̄b(k). . . . . . . . 12M flops

3) Then update P (k) by using (9) (LMS) or (10) (NLMS),
and calculate the projector Π(k) by using (11), where
Π((n + 1)N − 1) is denoted as Π(n).

. . . 2(M − 2p)p(32p + 5) + 8(M − 2p)(M (M − 2p)
+(M − p)2 + 2p2) + 33p3 + 31p2 + 25p + κ flops

4) Estimate θ̃i(n) by using (12), where θ̂i(n−1) is replaced
with θ̂i(n|n − 1). . . . . . 16(M − p)(M − p + 1) flops

5) Refine the state vactor with the observer as x̂i(n|n) =
x̂i(n|n − 1) + gi(θ̃i(n) − θ̂i(n|n − 1)), and estimate
θ̃i(n) from θ̂i(n|n) = cT x̂i(n|n − 1). . . . . . . . . 6 flops

The computational complexity of each step is roughly
indicated in terms of the number of MATLAB flops, where
κ = 0 or κ = 97p3−11p2+22p for the LMS or NLMS. Ad-
ditionally the first K0 = 2M snapshots of the received data
are accumulated for the off-line SUMWE [5] to provide the
initial values of directions {θ̂i(n− 1|n − 1)}, the LMS and
NLMS algorithms are initialized by P (K0) = Op×(M−2p),
and the initial values θ̇i(n−1) and θ̈i(n−1) are set to zero.

4. STABILITY ANALYSIS OF LMS AND NLMS
ALGORITHMS

By analyzing the mean and mean-square behaviors of the
weight-error P̃ (k) = P −P (k), the step-size convergence
conditions that guarantee both the mean and mean-square
stabilities of the LMS and NLMS algorithms are given as

follows, when the incident signals are constant.

0 < µ < min

{
2

λmax(Ψ̄1)
,

1
λmax(C−1C̃)

,
1

λmax(C−1C̆)
,

1
max{λ(L̃) ∈ R+} ,

1
max{λ(L̆) ∈ R+}

}
(17)

0 < µ̄ < 2 (18)

where Ψ̄1 = Ψ1+
∑p

l=1 {rMM (Mfll + M bl+1,l+1) + r11

· (M fl+1,l+1 + M bll)}, Ψ1 = Φ1ΦH
1 , Φ1 = E{Φ1(k)},

rim =E{yi(k)y∗
m(k)}, Mfim =E{yfi(k)yH

fm(k)}, M bim

= E{ybi(k)yH
bm(k)}, C = (Ip ⊗ Ψ̄1) + (Ψ̄1 ⊗ Ip), C̃ =

C̄ +K̄1, C̆ = C̄−K̄1, and C̄ = (Ψ̄T
1 ⊗Ψ̄1)+K̄2, while

K̄1 =
p∑

l=1

p∑
t=1

4∑
i=1

4∑
m=1

F̄
H
il,mt ⊗ F̄ il,mt (19)

K̄2 =
p∑

l=1

p∑
t=1

4∑
i=1

4∑
m=1

vec(F il,mt)vecH(F il,mt) (20)

L̃ =
[

C/2, −C̃/2
Ip2 , Op2×p2

]
, L̆ =

[
C/2, −C̆/2
Ip2 , Op2×p2

]
(21)

F̄ il,mt = E{z̃il(k)z̃T
mt(k)}, F il,mt = E{z̃il(k)z̃H

mt(k)},
z̃1l(k) = yfl(k)y∗

M (k), z̃2l(k) = yfl+1(k)y∗
1(k), z̃3l(k)

= ybl(k)y1(k), z̃4l(k) = ybl+1(k)yM (k), and ⊗ denotes
the Kronecker product. Here we assume that the real and
positive eigenvalues λ(L̃) and λ(L̆) of the 2p2×2p2 matri-
ces in (21) exist; if they do not, the corresponding condition
should be removed from (17).

Proof: Omitted (see [6] for details).

5. NUMERICAL EXAMPLES

The ULA with M sensors is separated by a half-wavelength,
and the simulation results shown below are obtained by the
ensemble-averaging over 1000 independent trials.
Example 1—Verification of Stability Analysis: The number
of sensors is M = 16, and one signal impinges the array
along θ1 = 10o with the signal power rs = 1. The additive
noise is assumed to be absent. The step-sizes of the LMS
and NLMS algorithms are set to µ = 0.25, 1/12, 1/24, and
1, and µ̄ = 2, 1.5, 1, and 0.1, respectively.

From the analyses in Section 4, the stability bounds of
the LMS step-size µ in the mean and mean-square senses
are µmean = 0.25 and µm.s. = 1/12, then the convergence
condition is given by 0 < µ < min{µmean, µm.s.} = µm.s.,
and the optimum step-size is µo = µm.s./2 [6]. Fig. 1
shows that there is an almost perfect agreement between the
LMS theoretical mean-square error (MSE) learning curve
(see [6]) and the ensemble-averaged ones for µ which are
smaller than the stability supremum µm.s. and that the fastest
convergence is achieved with µ = µo. Though there are ap-
preciable differences between the behaviors of the ensemble-
averaged curves and those of the theoretical ones for µ that
are out of the stability region, these phenomena essentially
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Fig. 1. MSE learning curves of null space estimation in the
case of one signal without additive noise ((a) µ = 0.25, (b)
µ = 1/12, (c) µ = 1/24, and (d) µ = 0.01; (i) µ̄ = 2, (ii)
µ̄ = 1.5, (iii) µ̄ = 1, and (iv) µ̄ = 0.1) for Example 1.

conform with the learning mechanism clarified and studied
in [7]. The convergence of the NLMS ensemble-averaged
MSE learning curves is guaranteed for the step-size µ̄ satis-
fying 0 < µ̄ < 2, and the learning curve converges fastest
with µ̄ = 1. Additionally the convergence condition for the
NLMS algorithm is independent of the statistics of the inci-
dent signal and the NLMS algorithm converges faster than
the LMS one.
Example 2—Tracking of Crossing Directions: The number
of sensors is M = 9, and there are four coherent signals
come from time-varying directions θ1(n) ∼ θ4(n) with
SNR’s of 15dB, 10dB, 13dB and 13dB. The directions are
tracked over 50s with T = 1s, and during each interval T ,
N = 100 snapshots of array data are measured and used to
estimate the orthogonal projector Π(n). The poles of sys-
tem F−gic

T are set as ρ11 = 0.7021+j0.6945, ρ12 = ρ∗11,
ρ13 = 0.9192, ρ21 = 0.5621 + j0.6145, ρ22 = ρ∗21, ρ23 =
0.5343, ρ31 = 0.7021+ j0.6656, ρ32 = ρ∗31, ρ33 = 0.8905,
ρ41 = 0.6912 + j0.6956, ρ42 = ρ∗41, ρ43 = 0.8243, re-
spectively. The trajectories of the actual directions and the
estimates obtained by the proposed NLMS-based algorithm
are plotted in Fig. 2, where µ̄ = 0.88. Clearly the proposed
algorithm has superior tracking ability in the multipath en-
vironment even the time-varying directions cross at some
instants.

6. CONCLUSION

This paper proposed a computationally efficient subspace-
based algorithm for adaptive direction estimation and track-
ing of uncorrelated and correlated narrowband signals im-
pinging on a ULA. In this algorithm, the null space is es-
timated using the LMS or NLMS algorithm, and the direc-
tions are updated using the approximate Newton method.
The convergence conditions for the step-sizes of the LMS
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Fig. 2. Averaged estimates for tracking time-varying direc-
tions of coherent signals (dotted line: actual value; and solid
line: estimate) for Example 2.

and NLMS algorithms that guarantee the mean and mean-
square stabilities were explicitly derived. The effectiveness
of the proposed algorithm was verified through numerical
examples, and it was shown that the proposed algorithm has
good adaptation and tracking abilities.
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