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ABSTRACT

This paper provides an asymptotic (in the number of snap-
shots) closed form expression of the bias and RMS (Root
Mean Square) error of the estimated DOA (Direction Of Ar-
rival) for the algorithm recently introduced in [1]. This algo-
rithm provides a 1-D DOA’s estimation in a multi-parameters
context where the DOAs have to be estimated with some
separable nuisance parameters. Results are based on a sec-
ond order approximation of the criterion. DOA estimation
errors are then expressed as a ratio of Hermitian forms of
multi-variate complex random variables. Theoretical results
are validated by simulations in a self-calibration context.

1. INTRODUCTION

Subspace based estimation of DOAs using an array of spa-
tially distributed sensors [2] has been intensively studied
these last decades. Recently, we introduced a new algorithm
[1], which provides a low-cost 1D estimation of DOAs in a
multi-parameters context where the steering vector can be
factorized in the DOA and some nuisance parameter vector
η. Vector η depends on the context. In wide-band con-
text [3], η corresponds to the frequency or the bandwidth
of the sources. In self-calibration with mutual coupling [4],
η may be composed of coupling matrix coefficients. In di-
verse polarisation [5], η may be the cross-polarization of
the sources etc... The purpose of this paper is to provide a
closed form expression of the asymptotic (in the number of
snapshots) performance (bias and RMS error) of this algo-
rithm (denoted in this paper MSP algorithm for Music Sep-
arable Parameters algorithm) due to modeling errors. For
conciseness and clarity of presentation, this paper investi-
gates the single nuisance parameter case. Results are based
on a second order approximation of the criterion, recently
introduced in [6][7]. Following the general approach pre-
sented in [7], DOA estimation errors are then expressed as
a ratio of Hermitian forms of multi-variate complex random
variables. Theoretical results are validated by simulations
in a self-calibration context.

2. SIGNAL MODELING AND PROBLEM
FORMULATION

A noisy mixture of a known number M of narrow-band
sources with DOAs θm (1 ≤ m ≤ M ) and associated nui-
sance parameter ηm, is assumed to be received by an ar-
ray of N sensors. The associated observation vector, x(t),
whose components xn(t) (1 ≤ n ≤ N ) are the complex
envelopes of the signals at the output of the sensors, is thus
given by

x(t) =
M∑

m=1

b̃ (θm, ηm) sm (t) + n(t) = B̃ s (t) + n(t),

(1)
where b̃ (θ, η) is the steering vector of a source, with DOA
θ and nuisance parameter η, B̃=[b̃ (θ1, η1)...b̃ (θM , ηM )]
and sm (t) is the complex envelope of the mth source. n(t)
is the noise vector, supposed to be spatially white.

The estimation problem under consideration is to esti-
mate the M DOA parameters θ1,. . . , θM with the MSP al-
gorithm [1] where the steering vector b (θ, η) depends on a
single parameter η such that:

b (θ, η) = U (θ)Φ (η) , (2)

Φ (η) = [1 η]T , U (θ) = [u1 (θ) u2 (θ)], (3)

where T denotes the transpose operator. For example, in
cases of diverse polarization and mutual coupling contexts,
expression of Φ (η) in (3) is given in [1].

The modeling errors em of the mth source is defined by:

em = b̃ (θm, ηm) − b (θm, ηm) . (4)

In these conditions the matrix B̃ depends on the vectors em

for 1 ≤ m ≤ M such that:

B̃ (E) = B + E with E = [e1 . . . eM ], (5)

where B=[b1...bM ] = B̃ (E=0) and bm=b (θm, ηm). The
covariance matrix Rx (E)=E[x(t)x(t)H ] is perfectly esti-
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mated in asymptotic conditions (H defines the conjugate-
transpose). Rx (E) can be expressed as:

Rx (E) = B̃ (E)RsB̃ (E)H + σ2IN , (6)

where Rs= E[s (t) s (t)H ] and IN is the N × N identity
matrix. However, B̃ (E) and Rs must be full rank. The N
eigenvalues λm (1 ≤ m ≤ M ) of Rx (E) check:

Rx (E) =
N∑

k=1

λk wkwH
k , (7)

where λ1 ≥ ... ≥ λM+1= ...=λN=σ2 and wk is the eigen
vector associated to λk. Under asymptotic assumption of
this paper, the noise projector Π (E) checks:

Π (E) = WnWH
n = IN − B̃ (E) B̃ (E)# , (8)

where Wn=[wM+1...wN ] and # defines the Moore Pen-
rose pseudo-inverse such that: B̃#B̃ = IM . We have pro-
posed in [1], for computational cost reasons, the MSP crite-
rion JE(θ):

JE(θ) =
det(U (θ)H Π (E)U (θ))

det(U (θ)H U (θ))
(9)

= det
(
U (θ)# Π (E)U (θ)

)
, (10)

where det (A) is the determinant of A. In the following, we
note θ̂m the M DOAs estimates of θm and ∆θm=θ̂m − θm

the DOA estimation error of θm.

3. RELATION BETWEEN ∆θM AND E

The MSP criterion (10) in θ=θm can be rewritten as:

JE(θm) = ϕE(v1m,u1m)ϕE(v2m,u2m)
−ϕE(v1m,u2m)ϕE(v2m,u1m), (11)

where ϕE(v,u) = vH Π (E) u, (12)

[u1m u2m]=Um=U (θm) and VH
m=U#

m=[v1m v2m]H . Af-
ter a second order Taylor expansion in θ of JE(θm) around
θ=θm, the expression of ∆θm becomes:

∆θm ≈ − J̇E(θm)
J̈E(θm)

, (13)

where J̇E(θ) and J̈E(θ) respectively indicate the first and
second derivatives of the criterion JE(θ) versus θ. The first
and second derivatives of ϕE(v (θ) ,u (θ)) versus θ check:

ϕ̇E(v (θ) ,u (θ)) = ϕE(v̇ (θ) ,u (θ)) + ϕE(v (θ) , u̇ (θ)),
ϕ̈E(v (θ) ,u (θ)) = ϕE(v̈ (θ) ,u (θ)) + ϕE(v (θ) , ü (θ))

+2ϕE(v̇ (θ) , u̇ (θ)), (14)

where u̇ (θ) and v̇ (θ) are the first derivatives at θ of u (θ)
and v (θ) and ü (θ) and v̈ (θ) are the second derivatives.
Using expressions (11)(14), the expression of J̇E(θ) and
J̈E(θm) becomes in θ=θm:

J̇E(θm) =
4∑

i=1

f
(
Mi

1122,m

) − f
(
Mi

1221,m

)
, (15)

J̈E(θm) = 2
4∑

i=1

4∑
j=i+1

f
(
Mij

1122,m

)
− f

(
Mij

1221,m

)

+
4∑

i=1

f
(
Mii

1122,m

) − f
(
Mii

1221,m

)
, (16)

where the Ith column of MI
ijkl,m and MII

ijkl,m are respec-
tively the first and the second derivative in θ=θm of the Ith

column of Mijkl,m=[vim,ujm,vkm,ulm], the Ith and J th

columns of MIJ
ijkl,m are the first derivatives in θ=θm of the

Ith and J th columns of Mijkl,m and

f (M) = ϕE(v,u)ϕE(y,x),
with M = [v u y x] . (17)

The others columns of MI
ijkl,m, MII

ijkl,m and MIJ
ijkl,m are

made up of the other columns of Mijkl,m.
In order to obtain a tractable expression, let’s now rewritte

∆θm as a ratio of Hermitian forms. A second order Taylor
expansion of the projector Π (E) in E=0 [7][8] gives:

Π (E) = Π2 (E) + o(‖E‖2),
Π2 (E) = Π0 + ∆1Π (E) + ∆2Π (E) /2, (18)

where Π0=Π (0). Using Appendix B of [9], the derivatives
of Π (E) are:

∆1Π (E) = −U0 − UH
0 ,

∆2Π (E) /2 = UH
0 U0 − U0UH

0 + V0 + VH
0 ,(19)

where

U0 = Π0 E B# and V0 = Π0

(
E B#

)2
. (20)

A second order Taylor expansion in E=0 of ϕE(v,u) =
ϕ̃E(v,u) + o(‖E‖2) can be rewritten in the following her-
mitian form [7][8]:

ϕ̃E(v,u) = vHΠ2 (E)u=εHQ(u,v) ε (21)

Q(u,v) =

⎡
⎣ q −qH

12 0T

−q21 Q22 Q23

0 Q32 Q33

⎤
⎦ and ε=

⎡
⎣ 1

e
e∗

⎤
⎦

where

e = vec(E) = [eT
1 ...eT

M ]T , q = vHΠ0u,

q12 = Φ(u,v),q21 = Φ(v,u),
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with Φ(x,y) = (
(
B#x

)∗ ⊗ (Π0y)),

Q22 = Ψ(B#,B#,Π0),
Q23 = Ψ(B#,Π0, (B#)H)P,

Q32 = PHΨ(Π0,B#,B#),
Q33 = PHΨ(Π0,Π0,B#B#H)P,

where Ψ(X,Y,Z) = ((Xv)∗ (Yu)T ) ⊗ Z, ⊗ is the Kro-
necker product and P the permutation matrix defined by
vec(ET )=Pvec(E).

Let’s note f̃4 (M)=J̃E(v,u)J̃E(x,y) verifying:

f̃4 (M) = ε⊗2H Q̆(M) ε⊗2, (22)

where ε⊗2=ε ⊗ ε and Q̆(M)=Q(u,v)⊗Q(x,y). Accord-
ing to (17)(21), the first and second derivatives of f̃4 (M)
and f (M) are equal in E=0. Consequently, the second
order Taylor expansion in E=0 of f (M) and f̃4 (M) are
equal:

f (M) = f̃ (M) + o(‖E‖2), (23)

f̃ (M) = εHQ(M)ε,

Q(M) = TH
1 Q̆(M)T1 +

g
(
TT

2 Q̆(M)
T
1
)

+ g
(
TH

2 Q̆(M)1
)

where f̃ (M) is the second order contribution of f̃4 (M) in
ε, 1=[1 0T ], εHg(w) ε = wT e⊗2

T with eT =[eT e∗T ]T . Per-
mutation matrices T1 and T2, made up of ones and zeros
check:

ε⊗2 = T1 ε + T2 e⊗2
T . (24)

Using (23) and replacing the function f̃ (M) by f (M)
in expressions (15)(16), the derivatives of JE(θm) are given
by:

J̇E(θm) = εHQ̇mε + o(‖E‖2), (25)

J̈E(θm) = εHQ̈mε + o(‖E‖2), (26)

where

Q̇m =
4∑

i=1

Q
(
Mi

1122,m

) − Q
(
Mi

1221,m

)
, (27)

Q̈m = 2
4∑

i=1

4∑
j=i+1

Q
(
Mij

1122,m

)
− Q

(
Mij

1221,m

)

+
4∑

i=1

Q
(
Mii

1122,m

) − Q
(
Mii

1221,m

)
.

The DOA estimation error ∆θm (13) becomes:

∆θm ≈ −εHQ̇mε

εHQ̈mε
, with ε =

[
1 vec (E)T

vec (E)H
]T

.

(28)

4. BIAS AND RMS ERROR OF MSP

Papers [7][8] provide an approximate expression of the mo-
ments of a ratio of Hermitians forms, similar to (28) when
||E||<<||B||. According to (28), the bias of ∆θm is:

E [∆θm] ≈ −
trace

(
Q̇mRε

)

trace
(
Q̈mRε

) , (29)

where Rε=E
[
εεH

]
and trace (A) is the trace of the matrix

A. Noting that (εHQ ε)2=
(
ε⊗2

)H (
Q⊗2

) (
ε⊗2

)
, the RMS

of ∆θm is:

RMSm ≈

√√√√√ trace
(
Q̇⊗2

m R(4)
ε

)

trace
(
Q̈⊗2

m R
(4)

ε

) , (30)

where R(4)
ε =E

[
ε⊗2ε⊗2H

]
. In the case of a circular Gaus-

sian distribution of ε, the relation between Rε and R(4)
ε is

[7][8]:

R(4)
ε =

⎡
⎢⎣

R1,1 · · · R1,K

...
. . .

...
RK,1 · · · RK,K

⎤
⎥⎦ , (31)

Ri,j = RεRε (i, j) + rε (j) rε (i)H − 1K1H
K δiδj ,

where Rε=[rε (1) · · · rε (K)], 1K is the K × 1 vector [1 0
· · · 0]T , K=1+2NM , Rε (i, j) is the ijth element of Rε

and δi =1 for i=1 and 0 otherwise.

5. SIMULATIONS

Simulations are conducted in self-calibration context [10],
with a mutual coupling matrix Z [1] depending on a sin-
gle parameter η corresponding to the mutual-coupling co-
efficient between two neighbouring sensors. The case of
a circular array of sensors of radius R=1λ is considered,
λ being the wavelenght. Let’s remember that the steer-
ing vector b (θ, η) checks b (θ, η) = Z (η)a (θ) , where
a (θ) = [a1(θ) · · · aN (θ)]T , with

an(θ) = exp(j2π(R/λ) cos(θ − ϕn)),

and ϕn = 2π((n − 1)/N). Therefore,

Z (η) =

⎡
⎢⎢⎢⎢⎣

1 η 0 η

η 1
. . . 0

0
. . .

. . . η
η 0 η 1

⎤
⎥⎥⎥⎥⎦ ,

and u1 (θ) = a (θ), u2 (θ)=[v1(θ) · · · vN (θ)]T with vi(θ) =
ai−1(θ) + ai+1(θ) for 1 < i < N , v1(θ) = a2(θ) + aN (θ)
and vN (θ) = a2(θ) + aN−1(θ).
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Simulations are conducted over 10000 Monte Carlo re-
alizations. We consider the case of M=2 sources of DOA
θ1=100 and θ2=117 degrees, with N=5 sensors. The model-
ing error is Gaussian and circular so that E[eieH

j ]=δi−jσ
2IN

with σ=0.122. Figures 1 and 2 respectively compare the
empirical RMS error and bias of the first source with theo-
retical performance given by equations (30) and (29). Fig-
ures are plotted as a function of η. Empirical and theoretical
results are in good adequacy. As expected from equations
(2)–(4), the adequacy of empirical and theoretical RMS er-
ror deteriorates as η decreases, due to an increase of model-
ing error contribution in (2).

6. CONCLUSION

This paper provides a closed form expression of the asymp-
totic performance of the MSP algorithm due to modeling
errors. Simulations, conducted in a self-calibration context,
show a very good agreement between empirical and theoret-
ical results. Extension of these results to a multiple nuisance
parameter case is an ongoing work.
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Fig. 1. RMS of the DOA θ1
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Fig. 2. Bias of the DOA θ1
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