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ABSTRACT

The EXtended Invariance Principle (EXIP) has been applied
to the structured covariance estimation of a zero mean Gaus-
sian vector, the resulting method was named COMET (CO-
variance Matching Estimation Techniques). This technique
has been recently used for estimating separately and effi-
ciently the direction of arrival (DOA) and angular spread
of a scattered source. Unfortunately this new technique
presents an ambiguity that limits its utilization in practice.
We show in this paper the existence and the origin of this
ambiguity and we propose a solution to eliminate this prob-
lem without introducing bias. Our approach consists first to
add a constraint to the original cost function, and then to re-
place the constrained problem by an unconstrained problem
by using the penalty function method.

1. INTRODUCTION

Traditional direction-finding techniques have generally been
developed for far-field point sources which travel along a
single path to the antenna array. However, in applications
such as mobile communications and sonar where the effect
of angular spread can not be ignored, due to multipath phe-
nomena, a distributed source model will be more appropri-
ate [3].

Many estimators for spatially distributed sources have
recently been proposed. In [5] and [4] respectively, the au-
thors have proposed the DSPE and DISPAR subspace-based
methods that are based on the eigen-decomposition of the
sample covariance matrix. Simulation results have shown
a performances degradation of these two techniques espe-
cially in the presence of multiple scattered sources. For the
purpose to improve the performances of these techniques,
the authors of [1] present a generalization of the WSF meth-
od (Weighted Subspace Fitting) in the case of full-rank data
model. This method, called WPSF [1], is based on the
eigen-decomposition of the covariance matrix into the sig-
nal and noise subspaces of variable size. The major prob-
lem of this technique is the determination of the number
of eigenvectors that span the signal and noise subspaces.
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Moreover, all these methodes require an important compu-
tational time.

In this paper, we focus our attention on the estimation of
DOA and angular spread of a spatially distributed source by
using a statistically and computationally efficient algorithm
(decoupled COMET-EXIP estimator also called EXIP-based
estimator) [2]. This method estimates separately the DOA
and the angular spread of scattered source. This enables
to replace a two-dimensional minimization problem by two
successive and simple one-dimensional minimization prob-
lem. Another advantage of this technique, is that the DOA
estimation does not require any knowledge of the distribu-
tion of scatterers around the nominal direction. Estimation
of spread angle, however, requires this knowledge.

Unfortunately, the pseudo-spectrum of this technique
presents an ambiguity. This prevents its utilization in prac-
tice. The aim of this paper is first, to find the origin of
this ambiguity problem and then to propose an approach for
solving this ambiguity. Our approach consists first to add a
constraint to the original COMET-EXIP cost function, and
then to replace the constrained problem by an unconstrained
problem by using the penalty function method.

2. PROBLEM FORMULATION

In this paper we consider a uniform linear array (ULA) of m
sensors. The distance between two adjacent sensors is de-
noted by d. Suppose that an electromagnetic scattered wave
is impinging on the array from angular direction 6,. The
distributed model proposed in [1] is adopted in this paper.
For this model, the received signal is written as

N
x(t) = s(t) Y an(t)a(f, + 0, (t)) + (1) (1)

n=1

where s(t) is the emitted signal and n(¢) denotes the noise
vector. N, an(t), 8, and (6, + 6,,), are the number of
reflectors surrounding the source, complex gain of the n'"
scattered signal, nominal DOA of the source and the DOA
of the n™ scattered signal, respectively. The gains are as-
sumed to be independent from ray to ray. The steering
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vector for a point source at DOA 6 is denoted by a(f) =
[1,ed %% sind  ei*3(m=1)sinf]T yhere, (.)T denotes the
transpose operator and A is the wavelength of the imping-
ing signal. As in [1], the scattering environment changes
rapidly compared with the mean DOA and spread parame-
ters. In other words, the random complex gains a,(t) are

assumed to be temporally white, zero-mean :

Elan(t)} = 0
Blan(t)ak )} = ‘J’V—“(s(n,n')(s(t,t') )

where o2 is the path power factor. The noise n(t) is consid-
ered as a circular complex Gaussian random variable, zero-
mean and spatio-temporally white :

E{n(t)n" ()} = 0216(t,t") 3)

E{.} denotes the expectation and (.) denotes the complex
conjugate transpose operator and (.)* is the conjugate.

Assuming that the noise and signal are uncorrelated, the
data model (1) allows us to write the covariance matrix of
the array measurements as :

R = E[x(t)x" (t)] = ®(6,)B®" (6.) )

where ®(0) = diag{a(6)} and B is given by
B =02, / p(A)a(f)a’’ () df + o1 5)

with 02 = E{| s(t) |?}E{| an(t) |?} is the signal source
power including the path gain factor and p(é) is the angular
distribution density of reflectors. It is easy to show that B
is a real-valued symmetric Toeplitz matrix. It is uniquely
determined by the elements of its first column vector de-
noted by B = [Bo, B1,-- -, Bm—1]T. Its elements depend,
as the formula (7) indicates, on the type of distribution of
reflectors around the source. For 0 < ¢ < m — 1, we have

By = f@q(em 0o) = Ugafq + ”.72:,5(%0) (6)
with
o~ e~ 30500 c0s0,)*  Gaussian dist. 7
77\ sine(v3¢23%2o, cosb,) uniform dist.

The parameter o, represents the standard deviation of 6.

3. DECOUPLED COMET-EXIP ESTIMATOR

We present briefly in this section the methods proposed in
[2], in which the considered problem is to estimate the pa-
rameters vector n = [ o o2, 02]". For the sake of
convenience, this parameter vector can be reparametrized

asm = [# B"]T. The COMET estimate is obtained by
minimizing the following cost function

o) = |WR-R@IWE[T @

where W is a positive definite weighting matrix and R =
L So1_, x(t)x™ (t) is the sample covariance matrix. By us-
ing the fact that Vec(B) = J3, where J is am? x m logical
matrix suchas J((n—1)m+1,k) =1 for| I—n |= k-1
and for 1 < n,l, k < m, and Vec(.) is the vector obtained
by stacking the columns of the argument on top of each
other, the COMET cost function (8), can be transformed
into the following cost function

(8, B)=VecHR)WVec(R)—28Ty+8TYB (9

where W = WY @ W with ® denotes the Kronecker ma-
trix product, y = J7 U (§)W Vec(R) and the matrix Y =
JTOH ()W (0)J with (9) = 87 () @ &(6)

According to [2], the optimal vector ,@ that minimizes
(9) and the optimal cost function C'(6) obtained by replac-
ing A into (9) are given by

B =
c®) =

Y 'y (10)
Kw-y'Y 'y (11)

where K'w = Vec (RYW Vec(R). Note that, the first term
of (11), Kw, is constant. Thus, the solution is also given
by the following maximization problem [2],

6= arg méw yly 'y (12)

In order to reduce the computational load associated with
the maximization of the above function, the authors propose
to use the unweighted cost function (replacing the matrix
W by an identity matrix in (12)) to find an initial estimate
of the DOA. Then, the solution is refined by using an itera-
tive search method (see [2]).

4. AMBIGUITY PROBLEM

In order to see the ambiguity of the COMET-EXIP method,
it is sufficient to show that there exists always a direction,
different to the effective direction of the source, for which
the value of the unweighted cost function is the same as that
for the true direction. The same steps can be made to show
the ambiguity of the weighted cost function, but in this case
the calculations will be more complicated.

For the unweighted cost function (W = I), the vector y
becomes y; = J7 U Vec(R) of which the first element is
y/h =X, R(k, k) and the others elements (1 < k <

2w kd o:
o sin 6]

m—1) are given by [y]r4+1 = 2Re[xre where,

Xk = Zm]k R(s + k, s). Moreover, we have

s=
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Y1 = (')t = diag[l/m, 1/2(m — 1), ..., 1/2].
Then, the unweighted cost function can be expressed as

Cr0)=Ki—y] Y 'y, (13)
m—1
| Xk |
—Ky —
Z m—k
k=0
m—1 2 ) ed -
_Re( Xk 67,747&' Sln9> (14)
= m— k

where K1 = Vec{R)Vec(R). By using the property

lim xp = ofa(m — k)Br(8,, (ro)ejgk;d sin 0o (15)

T—o0

where (31 (6,,0,) is given by (6) and (6,,0,) are the true
DOA and spread of the source. It is easy to show from (15)
and (14) that, for d = A/2, the value of 6'1(9) is the same
one for the true DOA 6, and for § = sin ' (sin 6, + p) with
p € Z.This equation has real solutions for : sinf, +p €
[—1,1]. Thus, the possible values of p are —1,0and 1 :
e The value p = 1 corresponds to 6, € [—90°,0°[
e The value p = —1 corresponds to 6, € ]0°,90°]
e The value p = 0 corresponds to the true direction § = 6,

As a conclusion, for a fixed value of 6, there is always
an ambiguity direction defined by the equation :

Bamp = sin~" | sin(f,) — sgn(6,) (16)

where sgn(6,) is the Signum function defined for nonzero
direction 6, by sgn(6,) =6,/ | 0, |.

5. PROBLEM RESOLUTION

In order to find the origin of this ambiguity problem, we
compare the elements of the vector B, = Y 'y for the
ambiguity direction 6,,,,;(16) with these for the true direc-
tion 6, in the case where d = A\/2. The elements of this
vector are given by

—jkmsing
[BI(G)} - Re(xk L ) -

m—k

where k = {0, 1, ..., m — 1}. Thus,

B16u)] | =D [Br6)] - a®)

k+1

As we can see, the elements of the vector B ; for the true
direction are equal in absolute value to these for the ambigu-
ity direction. On the other hand, the odd values of £ change
the sign by passing the true direction to the ambiguity di-
rection. A graphic illustration of the elements of vector Jé;
(10) for the Gaussian distribution of reflectors is given in

Gaussian distribution

B, (0<k<5)

5"

I I I
-100 =70 —41.1 0 20 50 100
Angle [ degrees |

Fig. 1. Ambiguity effect on the different elements of the
vector 3 given by (10), 8, ~ 20°, O4mp ~ —41.1°, 0 = 5°,
m = 6 and SNR = 10 dB (Gaussian distribution).

figure 1, the same behavior can be observed for the uniform
distribution.

From this result, it is easy to see that it is necessary to
add a constraint to the minimization of the cost function (9)
in order to eliminate this ambiguity. According to equation
(6), it is clear that for a Gaussian distribution of reflectors
around the source, all elements of the vector B have to be
positive. This condition remains true for small values of
the angular spread of uniform distribution. Thus, the new
minimization problem can be expressed as

mgn C(6,3) subjectto B8 >0 (19)

where C(6, 3) is the COMET cost function (9).

This constrained minimization problem, can be trans-
formed into the following unconstrained minimization prob-
lem

min C(6.8) + ¢ 17.9,(8) (20)

where C'(6, 3) is called objective function, the non-negative
value ( is the penalty parameter, [gQ] 1 = [mam(—ﬂk; 0)} 2

for 0 < k < m — 1 is the k*" penalty function and 1,, =
[1,1,...,1]7. This function must be continuous and posi-
tive. For the sake of convenience, we introduce the follow-
ing auxiliary function :

=Kw-28"y+B"YB+( 11 g,(B) (21)

Differentiating this function with respect to the vector 3,

%ﬁﬂ@ = 2y +2YB—2(g,(B) 22)
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e max(—Lk,0). According to the value of

B =Y 'y given by (10), if there exists a k such as Bk < 0.
The vector that cancels the equation (22) is given by :

where [g1 ]

B=[Y(6)+C(Dy] 'y (23)

with Dy, = diag[0, ..., 0, 1, 0, ... ,0], the one is in the
k™ position. By using the eigen-decomposition of the real-
valued matrix Y (6), we obtain

[Y(0)+ (D] '=U[Z+(D;] ' UT (24)

where ¥ = diag[po, p1, --- ,Mm—1] is the eigenvalues

matrix of Y () and U = [eq, ey, ..., €,_1] the corre-

sponding eigenvectors matrix. Outside the admissible re-

gion, where the inequality constraint is violated, the penal-

ties become infinite. Thus, the optimal solution of the penalty
problem can be made arbitrarily close to the solution of the

original problem by choosing ( sufficiently large. There-

fore, the optimal solution is given by :

Bop =UM, Uy (25)
with My = lim [+ (D; ]
(—o0
qhag [Mala R /J’]:,ilv 07 /~l’]:,_|1_17 ] ,u;n171:|(26)

The same calculation can be made if multiple elements
of the vector 3 are negative. In this case, the optimal solu-
tion can expressed as :

B,y = UMU"y (27)

with M = dmg[Hffjo), B Hl(i"fll)],and H()is
definedas H(f) = 1if # > 0 and H(S) = 0 else. Inserting
(27) into (9), the DOA of source is given by minimizing the

following modified cost function :
Ceorr(f) =Kw —y UMU"y (28)

The comparison between the pseudo-spectrum of this
last cost function (called Corrected COMET-EXIP) with the
one given by (11) is illustrated in the figure 2. This figure
shows the efficiency of our method to eliminate the ambi-
guity problem. We don’t present the perfomance of the pro-
posed method, because this method has the same estimation
performance as the original COMET-EXIP method. The ad-
vantage of our method is that, it is not ambiguous.

6. CONCLUSION

In this paper, we have presented the ambiguity problem of
the decoupled COMET-EXIP algorithm. To solve this prob-
lem, we have shown that it is necessary to add an inequality
constraint in the original cost functions of COMET-EXIP

. . . . . . .
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Fig. 2. COMET-EXIP (12) and Corrected COMET-EXIP
(28) spectra, §, ~ 20°, 0 = 5°,m = 6and SNR = 10 dB.

estimator. In order to solve this minimization problem, we
have used the penalty function method to transform a con-
strained problem into an unconstrained problem. The in-
equality constraint is placed into the objective function via
a penalty parameter in such a way that it penalizes any vi-
olation of the constraint. The final decoupled cost function
can be seen as a generalization of the original decoupled
cost function. Using this function, it is possible to localize
the source without ambiguity and without introducing bias.
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