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ABSTRACT

Cyclostationarity based Direction of Arrival (DOA) estima-
tion is of interest due to its immunity to interference and
noise. Recently the use of cyclic methods with a conju-
gate Minimum-Redundancy Linear Array (MRLA) and an
appropriate matrix augmentation technique was exploited by
Gelli and Izzo to improve the performance of Cyclic MUSIC
for narrowband signals. In this paper, we propose a cyclo-
stationarity based wideband signal DOA estimation method
with a conjugate MRLA. Exploiting the similarity of our
problem to DOA estimation for coherent signals, we propose
to utilize Forward/Backward Spatial Smoothing (FBSS) tech-
nique in our method instead of using the matrix augmenta-
tion technique. It is shown that our new method, in addition
to generalizing the previous method to wideband signals, is
able to detect more signals with improved performance than
the previous method.

1. INTRODUCTION

Cyclic MUSIC proposed by Gardner [1] exploits cyclosta-
tionary property possessed by most man-made communica-
tion signals in Direction of Arrival (DOA) estimation for nar-
rowband signals. Due to its effectiveness to combat interfer-
ence and noise, much activities followed [1] and different
cyclostationarity based DOA estimation methods were pro-
posed. On the other hand, for the conventional correlation
case, Minimum-Redundancy Linear Array (MRLA) [2] to-
gether with appropriate matrix augmentation technique have
been shown to provide better performance than the simple
Uniform Linear array (ULA) configuration [3]. This method
can be easily applied to the cyclic correlation case. How-
ever, in some cases, signals may only exhibit conjugate cy-
clostationarity. Gelli and Izzo [4] showed that in this case,
the MRLA configuration should be different and named it
as a conjugate MRLA. Together with an appropriate matrix
augmentation technique, this method provides better perfor-
mance than Cyclic MUSIC for narrowband signals.
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In this paper, we propose a cyclostationarity based DOA
estimation method with the same conjugate MRLA used in
[4]. But by exploiting and averaging cyclic conjugate cor-
relation over different time delays, our method is applicable
to wideband signals. Furthermore, by exploiting a similarity
of our problem to DOA estimation for coherent signals, we
propose to utilize the Forward/Backward Spatial Smoothing
(FBSS) technique [5] in our method instead of using the ma-
trix augmentation technique. Using a conjugate MRLA with
P antennas, which is sum coarray equivalent [6] to a ULA
with N antennas (P ≤ N ), [4] is able to detect DOAs of at
most N −1 narrowband signals with a same cycle frequency
of interest. Our method, however, is able to detect DOAs
of at most �2/3 ∗ (2N − 1)� wideband signals with a same
cycle frequency of interest, where �n� denotes the largest in-
teger less than or equal to n. Simulation results show that the
performance of DOA estimation is also enhanced using our
method.

2. ARRAY CONFIGURATION AND ASSUMPTIONS

Consider a linear array A consisting of P antennas. Let dp

represent the distance of the pth antenna from the reference
element, i.e., the first antenna, for p = 1, · · · , P . Accord-
ingly, we have d1 = 0 and d1 < d2 < · · · < dP . Fur-
thermore it is assumed that this linear array is derived from
a ULA UN containing N elements with intersensor spacing
∆ by removing some of its elements. Thus dp is an integer
multiple of ∆.

Two arrays are said to be sum coarray equivalent if C(A)
= C(B), where C(A) denotes the sum coarray [6] of the
array A, which is defined as the set

C(A) = {y | y = dp + dq, p, q = 1, 2, · · · , P} (1)

Note that C(A) is only dependent on the set of dp+dq. Since
the sum of different pairs of dp and dq could be the same for
a ULA, ULA is considered to be redundant. A conjugate
MRLA is a linear array with careful selection of dp such
that among all its sum equivalent coarrays, P is minimized.
This problem is referred to as a postage stamp problem [7].
Here we only list in Table 1 some results for 4 ≤ P ≤ 10,
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P {dp}/∆ N

4 {0, 1, 3, 4} 5
5 {0, 1, 3, 5, 6} 7
6 {0, 1, 3, 5, 7, 8} 9
7 {0, 1, 2, 5, 8, 9, 10} 11
8 {0, 1, 2, 5, 8, 11, 12, 13} 14
9 {0, 1, 2, 5, 8, 11, 14, 15, 16} 17
10 {0, 1, 3, 4, 9, 11, 16, 17, 19, 20} 21

Table 1. Conjugate MRLA Configurations

{dp}/∆ and N , representing the number of antennas, the
configuration of the conjugate MRLA, and the number of
antennas of the sum equivalent ULA coarray, respectively.

The following assumptions are made throughout this pa-
per:

A1) Signals of Interest (SOI) si(t), for i = 1,· · ·, I exhibits
conjugate cyclostationarity at cycle frequency α.

A2) si(t) is impinging on a Conjugate MRLA from direc-
tion θi, for i = 1,· · ·, I . The MRLA has P elements
and its sum equivalent ULA coarray has N elements.

A3) si(t) are mutually cyclically uncorrelated.
A4) Interference and noise either have different cycle fre-

quencies from α or do not exhibit cyclostationarity.
A5) Interference and noise are not cyclically correlated

with SOI.

3. EXISTING METHOD

Now let us take a brief look at the DOA estimation method in
[4] for narrowband signals using the conjugate MRLA dis-
cussed above. Since all the SOI are assumed to be narrow-
band, the signal received at the pth antenna with distance dp

from the first antenna can be written as

xp(t) =

I∑
i=1

si(t)e
j2πf0

dp

c
sin θi + np(t) (2)

where f0 is the carrier frequency, c is the propagation speed,
and np(t) includes interference and noise. Here the time
delay with respect to the first antenna dp

c sin θi is factored
out and treated as a phase shift. The cyclic conjugate cross
correlation of xp(t) and xq(t) is calculated as

rα
xpx∗

q
(τ) = 〈xp(t +

τ

2
)xq(t −

τ

2
)e−j2παt〉 (3)

where 〈·〉 denotes time averaging. Substituting (2) into (3),
we obtain

rα
xpx∗

q
(τ) =

I∑
i=1

rα
sis∗

i
(τ)ej2πf0

dp+dq

∆

∆ sin θi
c (4)

Refer to Table 1, for a P element conjugate MRLA, dp+dq

∆
combined by different p and q, for p, q = 1, 2, · · · , P , could
take values of 0, 1, · · · , 2N − 2. Thus the following Cyclic
Conjugate Correlation Vector (CCCV) could be obtained

[y(1), y(2), · · · , y(2N − 1)]T (5)

where

y(n) =

I∑
i=1

rα
sis∗

i
(τ)ej2πf0(n−1)

∆ sin θi
c (6)

for n =
dp+dq

∆ + 1 = 1, 2, · · · , 2N − 1.
Now a symmetric augmented matrix Y could be con-

structed with [y(i), y(i + 1), · · · , y(i + N − 1)] as its ith
row, for i = 1, 2,· · ·, N . It could be shown that the steer-
ing vector [1, ej2πf0∆ sin θi/c, · · · , ej2πf0(N−1)∆ sin θi/c]T is
lying in the signal subspace or orthogonal to the noise sub-
space of Y. Thus DOA estimation could be performed sim-
ilar to the MUSIC algorithm. (See detail in [4])

4. PROPOSED DOA ESTIMATION METHOD

The existing method assumes that the signals are narrowband
and the received signal at the pth antenna can be written in
(2). However, in our algorithm, we assume that the signals
might be wideband, thus no phase could be factored out and
the signal induced at the pth antenna is

xp(t) =
I∑

i=1

si(t +
dp

c
sin θi) + np(t) (7)

The first step of our method is to construct an Averaged
Cyclic Conjugate Correlation Vector (ACCCV) similar to
CCCV. Substituting (7) into (3), we obtain the cyclic con-
jugate cross correlation of xp(t) and xq(t) as

rα
xpx∗

q
(τ) = 〈

I∑
i=1

si(t +
dp

c
sin θi +

τ

2
)

·

I∑
i=1

si(t +
dq

c
sin θi −

τ

2
)e−j2παt〉

=

I∑
i=1

〈si(t +
dp

c
sin θi +

τ

2
)

· si(t +
dq

c
sin θi −

τ

2
)e−j2παt〉

=
I∑

i=1

rα
sis∗

i
(τ +

dp − dq

c
sin θi)e

j2π α
2

dp+dq

∆

∆ sin θi
c

(8)

Note that in the first equality of (8), np(t) and nq(t) are ig-
nored due to the assumptions A4-A5, the second equality is
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due to A3, and the third equality applies the shift property
of cyclic conjugate correlation, i.e., if y(t)=x(t + T ), then
rα
yy∗(τ)=rα

xx∗(τ)ej2παT .

First let us look at the factor rα
sis∗

i
(τ +

dp−dq

c sin θi) in
(8). Since our intention is to get a form similar to (4) for
the narrowband case, it is desirable that this factor be inde-
pendent of dp or dq. We propose to evaluate (8) at different
time delays τ and average them to obtain an averaged cyclic
conjugate cross correlation denoted by 〈rα

xpx∗

q
〉τ , where 〈·〉τ

denotes averaging over τ . 〈rα
xpx∗

q
〉τ could then be written as

〈rα
xpx∗

q
〉τ =

I∑
i=1

〈rα
sis∗

i
〉τej2π α

2

dp+dq

∆

∆ sin θi
c (9)

Now similar to [4], we construct a vector

r = [r(1), r(2), · · · , r(2N − 1)]T (10)

where

r(n) =
I∑

i=1

〈rα
sis∗

i
〉τej2π α

2
(n−1)

∆ sin θi
c (11)

for n =
dp+dq

∆ + 1 = 1, 2, · · · , 2N − 1. We name this
vector r as Averaged Cyclic Conjugate Correlation Vector
(ACCCV).

Since (10) and (5) are of the same form, to estimate θi,
we could also form an augmented matrix and follow the
same steps as in [4], we will then be able to detect DOAs of
N−1 wideband cyclostationary signals with cycle frequency
α. But in this paper, we propose to use another method to in-
crease the number of detectable signals and to improve the
performance of DOA estimation.

Define

aN (f, θi) =
[
1, ej2πf

∆ sin θi
c , · · · , ej2πf(N−1)

∆ sin θi
c

]T

(12)

AN (f) = [aN (f, θ1), · · · ,aN (f, θI)] (13)

rs =
[
〈rα

s1s∗

1
〉τ , · · · , 〈rα

sIs∗

I
〉τ

]T

(14)

where aN (f, θi) is the steering vector evaluated at frequency
f and direction θi with N elements, AN (f) is the steering
matrix containing the steering vectors, and rs is the vector
containing the averaged cyclic conjugate correlation of the
sources. Then using (12)-(14), the ACCCV of (10), could be
written as

r = A2N−1(
α

2
)rs (15)

Note that the steering vector is of size 2N − 1, and is evalu-
ated at frequency α/2.

Obviously rsr
H
s is of rank one. Thus, application of

MUSIC to rr
H will not yield correct estimate of θi. This is

analogous to the well-known problem in DOA estimation for

narrowband coherent signals in which the coherence causes
rank deficiency in the data correlation matrix. Therefore, the
well known FBSS technique [5], which was originally de-
veloped to decorrelate the coherent narrowband signals for
DOA estimation, can be utilized in our problem at hand.

Take the lth through (l + M − 1)th elements of the AC-
CCV, r in (10), to construct the lth forward sub-vector

r
f
l = [r(l), r(l + 1), · · · , r(l + M − 1)]T (16)

Since the size of r is 2N − 1 and the size of the forward
sub-vector (16) is M , the total number of such sub-vectors
we can construct is L = 2N − M . Using (12) to (14), r

f
l

can be written as

r
f
l = AM (

α

2
)Dl−1

rs (17)

where D
l−1 denotes the (l − 1)th power of the I by I diag-

onal matrix

D = diag
[
ej2π α

2

∆ sin θ1
c , · · · , ej2π α

2

∆ sin θI
c

]
(18)

Similarly, take the conjugate of (2N−l)th through (2N−
M − l + 1)th elements of the ACCCV to construct the lth
backward sub-vector

r
b
l = [r∗(2N−l), r∗(2N−l−1), · · · , r∗(2N−l−M +1)]T

(19)
The size of this backward sub-vector is also M , therefore
the number of backward sub-vectors we can construct is also
L = 2N − M . Again, using (12) to (14), rb

l can be written
as

r
b
l = AM (

α

2
)Dl−(2N−1)

r
∗
s (20)

Now similar to the FBSS technique, we define a spatially
smoothed “correlation” matrix as

R =
1

2

(
1

L

L∑
l=1

r
f
l

[
r

f
l

]H

+
1

L

L∑
l=1

r
b
l

[
r

b
l

]H

)

= AM (
α

2
)RsA

H
M (

α

2
) (21)

where

Rs =
1

2L

L∑
l=1

D
l−1

rsr
H
s

[
D

l−1
]H

+

1

2L

L∑
l=1

D
l−(2N−1)

r
∗
sr

T
s

[
D

l−(2N−1)
]H

(22)

For Rs to be full rank, we must have 2L ≥ I (refer to [5] for
more details). And to be able to detect I signals, the number
of elements of the forward and backward sub-vectors should
be greater than I , or M ≥ I + 1. Since the total number of
elements of r is 2N − 1 = L + M − 1, we have 2N − 1 ≥
I/2 + I + 1 − 1, or I ≤ 2/3 ∗ (2N − 1). Thus Our method
can detect DOAs of at most �2/3 ∗ (2N − 1)� wideband
cyclostationary signals with a same cycle frequency.
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5. SIMULATION RESULTS

In this section, three computer simulations are performed to
show the effectiveness of our proposed method. The sig-
nals used in these simulations are all wideband BPSK sig-
nals with baud rate 10 MHz, carrier frequency 20 MHz. The
Signal to Noise Ratio (SNR) is assumed to be 15 dB. A con-
jugate MRLA of size P = 4 is used.

Example 1: In this example, we illustrate that the method
in [4] can be extended to wideband signals by using ACCCV
instead of CCCV. Two wideband BPSK signals are imping-
ing on the array from directions of 20◦ and 50◦. The upper
part of Fig.1 shows the result using the matrix augmenta-
tion technique on CCCV as in [4]. The lower part of Fig.1
shows the result using the matrix augmentation technique
on ACCCV. We can see that our method works well for the
wideband signals, while the method in [4] fails to detect the
DOAs.
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Fig. 1. Estimated spatial spectra: applying matrix augmentation
technique on CCCV (upper) and ACCCV (lower)

Example 2: In this example, we illustrate that by ap-
plying the FBSS technique on ACCCV, the performance of
DOA estimation is further improved, compared with that ap-
plying the matrix augmentation technique, in terms of the
ability to separate two closely impinging DOAs. Two wide-
band BPSK signals are impinging closely from 20◦ and 25◦.
As shown in Fig.2, the method using ACCCV and the FBSS
technique separates the two DOAs from 20◦ and 25◦, but the
other method using ACCCV and the matrix augmentation
technique fails to detect the two DOAs.

Example 3: In this example, we illustrate that by ap-
plying the FBSS technique on ACCCV using a conjugate
MRLA, DOAs of more sources than the virtual number of
antennas N can be detected. [4] stated that at most N − 1
DOAs of narrowband signals can be detected with a conju-
gate MRLA of size P (Refer to Table 1). In this case P is
4, the corresponding N is 5, thus at most 4 DOAs can be
detected. While our method can detect at most �2/3∗ (2N −
1)� = 6 DOAs of wideband signals. Now let us take 5 wide-
band signals from directions of −60◦, −30◦, 0◦, 25◦ and
55◦ for example. Fig.3 shows that our method detects these
DOAs successfully.
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Fig. 2. Separation of two closely impinging DOAs (20
◦ and 25

◦):
−− applying matrix augmentation technique on ACCCV; — ap-
plying FBSS technique on ACCCV
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Fig. 3. 5 DOAs of wideband cyclostationary signals are detected
using a conjugate MRLA of size 4 by our proposed method: apply
FBSS technique on ACCCV
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