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ABSTRACT

This paper gives explicit closed-form expressions of the
stochastic Cramer-Rao bound (CRB) on direction of ar-
rival (DOA) estimation accuracy for non-circular Gaussian
sources in the case of an arbitrary unknown noise field pa-
rameterized by a vector of unknowns from the Slepian-
Bangs formula. As a special case, the CRB under the
nonuniform white noise assumption is derived. Our expres-
sions can be viewed as extensions of the well-known results
by Stoica and Nehorai, Weiss and Friedlander, Ottersten et
al, and Gershman et al. Some properties of these CRBs are
proved, then these bounds are numerically compared with
the conventional CRBs under the circular complex Gaus-
sian distribution for different unknown noise field models.

1. INTRODUCTION

Stochastic and deterministic CRBs derivation for the DOA
parameter alone has been an intensive research field. These
bounds have been derived for circular complex Gaussian
sources under uniform white noise field in [1, 2, 3, 4] and [5]
respectively. Then the stochastic CRB has been derived un-
der nonuniform white and arbitrary unknown parametrized
noise fields in[6] and [7] respectively. The general case of
an arbitrary unknown noise covariance is particularly im-
portant in mobile communications because the dominant
noise is external in radio frequency systems [8] and con-
sequently its presence introduces correlation between the
different noise processes and because there is normally no
signal-free samples available that could be used for estimat-
ing the noise covariance. In these applications, non-circular
complex signal with discrete distributions are frequently en-
countered (e.g. binary phase shift keying (BPSK) and off-
set quadrature phase shift keying (OQPSK) are frequently
encountered), but the associated stochastic CRB appears to
be prohibitive to compute. Because under rather general
conditions, the non-circular complex Gaussian CRB matrix
is the largest of all CRB matrices among the class of arbi-
trary non-circular complex distributions with given covari-
ance matrices (see e.g., [9, p. 293]), we need an explicit ex-
pression of the stochastic CRB under non-circular Gaussian
distributions of the sources and arbitrary unknown noise

fields which can be used as an upper bound of the stochastic
CRB under these discrete distributions. Consequently this
expression appears to be both an extension of the results
[6] and [7] to general non-circular complex Gaussian dis-
tributions and result [10] to nonuniform white and arbitrary
unknown parametrized noise fields.

In this paper, our derivation is inspired by the proof pre-
sented in [6, 7] applied to the extended Slepian-Bangs for-
mula [10]. But, due to the non-circularity of the sources,
the key point of this proof, i.e., that the number of terms of
the extended source covariance matrix is equal to the num-
ber of real and imaginary parts of both sources covariance
matrices, is not valid. Consequently to retain the main fea-
tures of the proof given in [6, 7], we must first prove that the
stochastic CRB for the DOA parameter is insensitive to the
constraints on this extended covariance matrix. This points
will be derived from the study of the ML DOA estimation.

2. ARRAY SIGNAL MODEL

Let an array of M sensors receive K (K < M ) narrowband
signals impinging from the sources with unknown DOAs.
The array snapshot complex vectors can be modeled as

zt = A(θ)st + nt, t = 1, . . . , T
where A(θ) = [a1, . . . ,aK ] is the full column rank steer-
ing matrix where ak is parameterized by the scalar θk and

θ
def= (θ1, . . . , θK)T . st = (st,1, . . . , st,K)T and nt model

signals transmitted by sources and additive noise respec-
tively. st and nt are independent, complex zero-mean. nt

is assumed circular complex Gaussian with unknown co-
variance matrix E(ntnH

t ) = Qn, while st is non-circular
complex Gaussian, and possibly spatially correlated or even

coherent with Rs
def= E(stsH

t ) and R′
s

def= E(stsT
t ). This

leads to the covariance matrices of zt:
Rz(α) = ARsAH + Qn and R′

z(α) = AR′
sA

T ,
where the vector α of unknown real parameters collects the
DOAs and nuisance parameters. These covariance matri-

ces are estimated by Rz,T
def= 1

T

∑T
t=1 ztzH

t and R′
z,T

def=
1
T

∑T
t=1 ztzT

t , respectively. Let us consider the following
general noise model introduced in [11] and used in [7]

Qn = Qn(σ)
where σ

def= (σ1 . . . , σN )T is the vector of real un-
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known coefficients which are used to parameterize the
noise covariance matrix. If no a priori information
is available concerning the spatial covariances of the
sources, (Rs,R′

s) is generically parameterized by the
real parameters ρ = ((�([Rs]i,j),�([Rs]i,j),�([R′

s]i,j),
�([R′

s]i,j))1≤j<i≤K , ([Rs]i,i,�([R′
s]i,i), �([R′

s]i,i))i=1,...,K)T

Thus the vector of unknown real parameters can be written

as α
def= (θT , ρT , σT )T . This parameter is supposed

identifiable from (Rz(α),R′
z(α)). The PDF of zt can be

expressed as a function of z̃t
def= (zT

t , z∗t
T )T as

p(z̃t) = (π)−M [Det(Rz̃(α))]−1/2exp[−1
2
z̃H

t R−1
z̃ (α)z̃t]

(2.1)

where Rz̃(α) def= E(z̃tz̃H
t ) = Ã(θ)Rs̃ÃH(θ) + Qñ with

Rs̃ =
[

Rs R′
s

R′∗
s R∗

s

]
, Ã(θ) def=

[
A(θ) O
O A∗(θ)

]
and

Qñ
def=

[
Qn O
O Q∗

n

]
.

3. STOCHASTIC CRAMER-RAO BOUNDS

To derive the stochastic CRB of the parameter θ alone, two
approaches could be considered. One of them consists in
computing the asymptotic covariance matrix of the ML es-
timator, and the other is obtained directly from the extended
Slepian-Bangs formula derived in [10]. The first approach
has been successfully used in the case of uniform white
noise fields in [1, 10], where a closed-form expression of
the log-likelihood function concentrated with respect to the
full set of the signal and noise nuisance parameters was
available. In the case of nonuniform white and linearly pa-
rameterized noise fields, such property has appeared to be
impossible to obtain in [6] and [12] respectively. Conse-
quently, we concentrate on the second approach. To adapt
the proofs given in the circular Gaussian case in [2, 6] and
[7] in the uniform white, nonuniform white and arbitrary
unknown parameterized noise field respectively, to the non-
circular case, the key point Vec(Rs̃) = Jρ where J is a con-
stant nonsingular matrix must be preserved. Because Rs̃ is
structured, we must first prove that the stochastic CRB for
the DOA parameter is insensitive to the constraints on Rs̃.

3.1. Maximum likelihood estimation

We first note that the log-likelihood function associated with
the PDF (2.1) can be classically written (see e.g. [1]) after
dropping the constants as

L(θ, ρ, σ) = −T

2
(
ln[Det(Rz̃)] + Tr(R−1

z̃ Rz̃,T )
)

(3.1)
Due to the structures of Rs̃ and Qñ in Rz̃, the ML estima-
tion of (θ, ρ, σ) becomes a constrained optimization prob-
lem which is not standard. Despite this difficulty, we prove
in [13] the following result

Result 1 If the sample covariance matrix Rz̃,T is positive
definite, the joint constrained and unconstrained ML esti-
mates which maximize the log-likelihood function (3.1) co-
incide.

3.2. Stochastic Cramer-Rao bound expressions

From the previous result, the stochastic CRB for the signal
DOAs associated with the constrained and unconstrained ar-
ray signal models coincide. Using the unconstrained model,
let α = (θT , ρT , σT )T with here ρ contains the real pa-
rameters of the unconstrained matrix Rs̃. With this un-
constrained model, we can follow along the lines of the
derivation given in [7] where Rz = ARsAH + Qn is re-
placed here by Rz̃ = ÃRs̃ÃH +Qñ because the key point
of the derivation, i.e., the relation Vec(Rs̃) = Jρ where
J is a constant nonsingular complex matrix is preserved.
By adapting the proof given in [7], the following result is
proved in [13].

Result 2 The normalized (i.e., for T = 1) DOA-related
block of CRB for non-circular complex Gaussian (NCG)
sources in the presence of an arbitrary unknown (AU) noise
field is given by the following explicit expression:

CRBNCG
AU (θ) =

1
2

{
�

[(
D̆HΠ⊥

Ă
D̆

)
�

(
[RsĂH ,R′

sĂ
T ]

R̄−1
z̃

[
ĂRs

Ă∗R
′∗
s

])T
]
− MNCG

AU TNCG
AU

−1
MNCG

AU

T

}−1

(3.2)

using real matrices

MNCG
AU = 2�

{
QT

[
(D̆HΠ⊥

Ă
) ⊗ (GĂRs)T

]
P∗

}
+2�

{
QT

[
(D̆HΠ⊥

Ă
) ⊗ (G

′
Ă∗R

′∗
s )T

]
P∗

}
TNCG

AU = 4�{PH
[
GT ⊗ Π⊥

Ă

]P}
−2

(
PH

[
(Π⊥

Ă
)
T ⊗ Π⊥

Ă

]
P

)
with Q def=

[
vec(e1eT

1 ), vec(e2eT
2 ), . . . , vec(eKeT

K)
]

and

P def=
[
vec(Q̄1

n), vec(Q̄2
n), . . . , vec(Q̄N

n )
]

where ei con-
tains one in the ith position and zeros elsewhere and

Qk
n

def= dQn( � )
dσk

, Q̄k
n

def= Q−1/2
n Qk

nQ−1/2
n , Ă def= Q−1/2

n A,

D̆ def= dĂ
d

� , D def= [d1, . . . ,dK ] def=
[

da1
dθ1

, . . . , daK

dθK

]
,

R̄z̃
def= Q−1/2

ñ Rz̃Q
−1/2
ñ , R̄z

def= Q−1/2
n RzQ

−1/2
n , R̄′

z
def=

Q−1/2
n R′

zQ
−1/2
n , G =

(
R̄z − R̄

′
zR̄

∗−1
z R̄

′∗
z

)−1

and G
′
=

−GR̄
′
zR̄

∗−1
z .

When the noise is spatially uncorrelated with different
sensor noise variances (nonuniform white noise (NU)). Re-
sult 2 takes the following form that is proved in [13].

Result 3 For non-circular complex Gaussian sources, the
normalized DOA-related block of CRB under the nonuni-
form white noise assumption is given by:

CRBNCG
NU (θ) =

1
2

{
�

[(
D̆HΠ⊥

Ă
D̆

)
�

(
[RsĂH ,R′

sĂ
T ]

R̄−1
z̃

[
ĂRs

Ă∗R
′∗
s

])T
]
− MNCG

NU TNCG
NU

−1
MNCG

NU

T

}−1

(3.3)
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using real matrices
MNCG

NU = 2�
[
(D̆HΠ⊥

Ă
) � (GĂRs)T +

(D̆HΠ⊥
Ă

) � (G
′
Ă∗R

′∗
s )T

]
TNCG

NU = 2
(
GT � G− (ΠĂG)T � (ΠĂG)

)
.

3.3. Single source case

In the particular case of one signal source, it is shown in
[13] that the CRB given by Result 3 can be simplified to

Result 4 The CRB of θ1 for a non-circular complex Gaus-
sian source corrupted by nonuniform white noise field de-
creases monotonically as the non-circularity rate increases
and is given by

CRBNCG
NU (θ1) =

1
α 1

[
2r−1

1 + ‖a1‖−2r−2
1 + ‖a1‖2 − ‖a1‖2ρ2

1

‖a1‖2r1 + 1 + (1 − ‖a1‖2r1)ρ2
1

]

where the non-circularity rate ρ1 is defined by E(s2
t,1) =

ρ1e
iφ1E|s2

t,1| and satisfies 0 ≤ ρ1 ≤ 1 (φ1 is the circularity
phase of st,1). The SNR is defined as in [6, rel. (48)] by

r1
def=

σ2
s1

M

∑M
i=1

1
σ2

i
where σ2

s1

def= E|s2
t,1|, and α1 is the

noise dependant factor
(

2‖a1‖2

aH
1 Q−1

n a1

)
d̆

H

1 Π⊥
ă1

d̆1 with ă1 =

Q−1/2
n a1 and d̆1 = dă1

dθ1
. For ρ1 = 0, we note that an

expression of CRBCG
NU(θ1) has already been given [6, rel.

(46)], but with a more intricate expression.

4. COMPARISONS BETWEEN CRBS

Let us consider the situation when the noise is uniform and
spatially white (U) while yet, not knowing this, the noise
is modeled using N > 1 parameters. Comparing (3.2) and
(3.3) under these conditions with

CRBNCG
U (θ) =

σ2
n

2

{
�

[(
DHΠ⊥

AD
)
�

(
[RsAH ,R′

sA
T ]R−1

z̃

[
ARs

A∗R
′∗
s

])T
]}−1

obtained in [10], we have because MNCG
(×) TNCG

(×)

−1MNCG
(×)

T

is nonnegative definite

CRBNCG
AU (θ)|Qn=σ2

nIM
≥ CRBNCG

U (θ)
and CRBNCG

NU (θ)|Qn=σ2
nIM

≥ CRBNCG
U (θ).

Let us now compare the stochastic and asymptotic deter-
ministic CRBs in the case of colored or nonuniform white
noise field for non-circular complex source signals. First,
we note that the following expression of the asymptotic de-
terministic CRB proved in [6] in the circular case remains
valid in the non-circular case as well

CRBDET
AU (θ) =

1
2

{
�

[
(D̆HΠ⊥

Ă
D̆) � RT

s

]}−1

.

We prove in [13], the following result

Result 5 If Rs̃ is nonsingular

CRBDET
AU (θ) ≤ CRBNCG

AU (θ).

5. ILLUSTRATIVE EXAMPLES

The purpose of this section is to illustrate Results 2, 3 and
5, and to compare these stochastic CRBs to the stochastic
CRBs under circular complex Gaussian distributed source
signals as well with the deterministic CRB. We consider
throughout this section two independent and equipowered
sources with identical non-circularity rate. These sources
impinge on a uniform linear array of M = 10 sensors for
which ak = (1, eiθk , . . . , ei(M−1)θk)T . We assume that the
noise field is modeled by the three following covariance ma-
trices Q(i)

n , i = 1, 2, 3. The first two models and the third
model come from [7] and [6] respectively.

Q(1)
n (k, l) = σ2

n exp(−(k − l)2ζ)
Q(2)

n (k, l) = σ2
n exp(−|k − l|ζ)

Q(3)
n = Diag(σ2

1 , . . . , σ2
M ).

In the first two colored noise field models, σ = (σ2
n, ζ)T

where ζ is the ‘color’ parameter and the SNR is defined

by
σ2

s1
σ2

n
and in the nonuniform white noise field model σ =

(σ2
1 , σ2

2 , . . . , σ2
10)

T and the SNR is defined by
σ2

s1
10

∑10
i=1

1
σ2

i
.

In Fig. 1, we compare the stochastic CRBs under cir-
cular and non-circular complex Gaussian distributed source
signals to the deterministic CRB. The first two noise field
models are used. The bounds CRBNCG

AU (θ1), CRBCG
AU (θ1)

and CRBDET
AU (θ1) 1 are plotted against ζ. Compared to [7,

Fig. 1], we note a similarity of behavior of these CRBs. We
note that when ζ decreases all the CRBs approach zero be-
cause Qn becomes singular. When ζ � 1, the two first
noise model transform to the uniform white noise model
and each of the three CRBs associated with the two models
merges. We see that the stochastic CRB under non-circular
complex Gaussian distributed sources is visibly larger that
the deterministic CRB.

In Figs. 2 and 3, we compare the non-circular Gaus-
sian CRB with the circular Gaussian CRB by means of the

ratio r
def= CRBNCG

NU (θ1)

CRBCG
NU (θ1)

for the third noise model. These

figures examine the dependence of the ratio r with the
non-circularity rate ρ2 = ρ1, the DOA separation ∆θ =
θ2 − θ1 and the SNR. Fig. 2 shows that CRBNCG

NU (θ1) de-
creases as the non-circularity rate increases (this extends
to two equipowered and independent sources a property
proved in the one source case). Furthermore this decrease
is more prominent for low DOA separation. Fig. 3 shows
that r decreases as the DOA separation and the SNR de-
crease and the difference of order of magnitude between
CRBNCG

NU (θ1) and CRBCG
NU(θ1) is quite significant for low

DOA separations and SNRs.

1All the CRBs are computed for T = 1.
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Fig.1 CRBNCG
AU (θ1), CRBCG

AU (θ1) and CRBDET
AU (θ1) as a function

of ζ with ∆θ = 0.1rd, SNR= 0dB and∆φ = 0.52rd
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6. CONCLUSION

New closed-form expressions of the stochastic CRBs of the
DOA parameter estimates for non-circular complex Gaus-
sian sources in the general case of an arbitrary unknown
noise field have been presented. Compared with the de-
terministic CRB and the circular complex Gaussian CRB,
some properties have been proved and some numerical ex-

amples with particular noise fields have been exhibited.
They show that the difference between the non-circular and
circular complex Gaussian CRB may be quite significant,
particularly for low DOA separations and SNRs. Conse-
quently our derived non-circular complex Gaussian CRB
provides a tighter upper bound on the CRB under non-
circular complex discrete distribution compared to the stan-
dard circular complex Gaussian CRB.
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