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ABSTRACT

The singular value decomposition (svd), a standard tool
for theoretical and computational matrix analysis, represents
a matrix as an ordered product of a unitary matrix, a non-
negative, real diagonal matrix, and a second unitary ma-
trix. Our contribution is to extend the svd representation
to a matrix-valued impulse response. The representation in-
volves a countably infinite number of vector-valued eigen-
functions and scalar singular values, and it provides the most
concise and elegant description of the action of a matrix-
valued filter (for example, a space-time communication chan-
nel) when driven by a finite-duration input signal.

1. INTRODUCTION

The singular value decomposition (svd) represents a N x M
complex matrix H as a product, H = ®D, ¥t where D,
is a diagonal square matrix having row and column dimen-
sions min(M, N') whose diagonal elements {v;}, the sin-
gular values, are real and nonnegative, and ® and ¥ are
unitary matrices having row-dimensions of N and M re-
spectively, and column dimensions equal to min (M, N) [6].
The superscript “1” denotes “conjugate transpose”. The svd
provides the simplest way to visualize the action of matrix
multiplication, and it is a natural theoretical and compu-
tational tool for formulating problems of over- and under-
determined systems of linear equations.

Our contribution is to extend the svd representation to
the matrix-valued impulse response of a space-time linear
channel. The mathematical basis for the svd is the repre-
sentation by Kelly and Root [1] of a nonnegative-definite
matrix-valued kernel in terms of scalar eigenvalues and vec-
tor eigenfunctions. We discuss only the continuous-time
case, but analogous discrete-time results hold also.
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2. NOTATION

A complex matrix-valued impulse response is easily moti-
vated by a multiple-antenna wireless link having M trans-
mit antennas and N receive antennas. Over a time interval
[Ti0,Ti1], an input signal, denoted 5(7), an M x 1 vector
function of input time 7, drives the /M transmit antennas.
The resulting output at the IV receive antennas, denoted
Z(t), is an N x 1 vector function of output time ¢, where

T
z(t) = drH(t —71,7)5(1), (1)
Tio

where H(t — 7,7) is an N x M matrix whose nm-th ele-
ment is the impulse response, Ay, (t — 7, 7), that connects
the m-th transmit antenna to the n-th receive antenna, where
the impulse is applied at time 7. Any linear time-varying,
delay-spread channel is described by such an impulse re-
sponse. For a time-invariant channel the dependence of
H(t — 7, 7) on its second variable vanishes.

3. SVD OF MATRIX IMPULSE RESPONSE

Let H(t—7,7) be a N x M time-varying impulse response.
Then for any specified finite input interval [T}, T3] and any
specified output interval [T,0, T, ], either finite or infinite,
the impulse response has the following exact representation
over the indicated ranges of input time, 7, and output time,
t,

H(t—71,7) vm/J[

||M8

TE [Tio,Til], t € [To,To], (2)

where {v,}, the singular values, are nonnegative real scalars,
{¢¢(t)}, the output eigenfunctions, are complex N x 1 func-
tions of ¢ that are orthonormal over the output interval, and
{4p¢(7)}, the input eigenfunctions, are complex M x 1 func-
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tions of 7 that are orthonormal over the input interval,

To1 B B
/ dt¢;(t)¢f(t): il j:1727"'7 821727"'7
Too
(3)

Ti1

dTl/;;(T)ZEf(T): 3l j:1727"'7 621727

“)

Note that the input and the output eigenfunctions are not
eigenfunctions of the impulse response, but rather eigen-
functions of certain covariance kernels. In general a spec-
ification of different input or output intervals results in a
different svd representation, in the same way that removing
rows or columns from a matrix changes its svd.

The svd simultaneously diagonalizes the channel over
both space and time. For a given input, 5(7), the output of
the channel (1) takes the form

Ti1 _ _
B(t) = / e S Ge(tyoedl(n)5(r),

Tio L:vp>0
t € [TOO;Tol] . (5)

Tio

After multiplying both sides of the expression by qg;r (t) (on
the left), and integrating with respect to ¢, we obtain

l'j:'l)jsj,j:]-,2,"', (6)

where the {s;} and {x;} are the scalar coefficients that rep-
resent the input signal and the output signal with respect to
the orthonormal {+;(7)} and {¢,(t)} respectively,

Ti1

5= [ ardi@st). w = [

Tio Too

To1

dt 1 (H)z(t) . (7)

The attainable values of the output Z(¢) are linear combina-
tions of those {¢;(t)} whose associated singular values are
significantly greater than zero.

The power of the svd is immediately appreciated by
considering the problem of choosing a finite duration in-
put function 5(7), subject to an energy constraint, to ap-
proximate a desired output function d(t), over a specified
interval, in the mean-square sense. To do so we expand
the input and output functions in terms of the input and out-
put eigenfunctions respectively, and formulate the following
minimization problem,

(5 43 s — vy 57

j=1

+AY ST 8, (8)
j=1

where ) is a Lagrange multiplier. The optimum solution for
the coefficients of the input waveform is

.
S5 j=1,2

Sj A-f-’l)]z, Pt ) ()

where A is adjusted to satisfy the specified energy constraint.
In contrast, this problem could not be tackled directly with
Fourier methods because of the finite-time support of the
input waveform.

4. DERIVATION OF SVD

We begin with the matrix version of Mercer’s theorem [1,
5]. Starting with the N x M channel impulse response, we
define a M x M Hermitian nonnegative-definite covariance
kernel, K (u, 7), as follows,

To1
K(u,T) :/ dtH'(t —u,u)H(t—7,7).  (10)
Too

Under reasonable mathematical conditions, Kelly and Root
[1] proved that the kernel can be expanded in terms of vector
eigenfunctions and scalar eigenvalues as follows,

Mg

”e 1/’5 ),

—1
u € [Tio,Tun], 7€ [Tio,Tin], (11)

where
Ti1 B B
dr K (u,7) (1) = 07 the(u),
Tio
u € [Ti07Ti1]7 621727 ) (12)

the {v?} are nonnegative real eigenvalues, and the {¢,(7)}
are M x 1 orthonormal eigenfunctions that satisfy (4).

Next we use the vector-valued eigenfunctions {1, (7)}
as inputs to the channel to obtain N x 1 vector-valued scaled
output functions {¢(#)}. First, consider the case where the
eigenvalue, v?, is strictly positive. Then we define the cor-
responding output function as follows,

Ti1
d_)g(t) = l / drH(t—71,71) 1/_115(7'). (13)

Ve J1io

A successive application of the definition (13), the definition
of the covariance kernel (10), the eigenfunction/eigenvalue
relation (12), and the orthogonality of the eigenfunctions
(4) proves that the {¢,(¢)} that are associated with strictly
positive eigenvalues are mutually orthonormal,

To1 _ B
| adwan

Too

= 5]'[, Vi, ’Uj>0, ve > 0. (14)
The output of the channel resulting from an application of
an eigenfunction to the input of the channel whose eigen-
value is zero is equal to zero, because otherwise, a “squar-
ing” and integration of the expression with respect to ¢t would
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imply that the eigenvalue is greater than zero - a contradic-
tion. For strictly positive eigenvalues we rewrite (13) as

qgg(t)vg:/ ! du H(t — u,u) ()

T;
t € To0,To1], £=1,2,---. (15)

Now we multiply both sides of (15) (on the right) by 1/3} (),
and sum over £ such that vy is positive,

PR AGLRCS

L:ve>0
Tix _ _
= / duH (t —u,u) > Pp(u)pf(r),
T; L:v>0
t e [T003T01]7 TE [TiO’Ti ] ‘ (16)

We claim that

Ti1
/ duH (t —w,u) > Ge(u)pf(r) = H(t —7,7).
T; L:vg>0

17)

To show this we apply an input to the channel which can
be expressed as 5(u) = 5|(u) + 51 (u), where 5)(u) is
spanned by the eigenfunctions having positive eigenvalues,
and where 5 (u) is orthogonal to those same eigenfunc-
tions,

Ti1 _ _
s = [ 4 ¥ duwilmse).  as

Tio L:vg>0

and 5 (u) = 5(u) — 5| (u). Of the two additive components
of 5(:), the channel responds only to 5 (). (It can be shown
that the energy at the output of the channel due to 5 (-) is
equal to zero.) The channel response to 5(-) is identical to
the response to 5 (-), so

/Ti1 drH(t —7,7)5(7)

T;

Ti Ti

L:vg>0

This proves (17) which, when substituted into (16) yields
the desired svd representation.

5. SPECIAL CASES OF SVD

We now consider some special cases of the svd: the diag-
onal kernel, an impulse response that is separable in space
and time, the time-invariant channel for large time-bandwidth
product, and finally the ideal bandlimited scalar channel.
For three of these cases the svd exhibits distinct space-time
structure. In general the svd makes no distinction between
spatial and temporal degrees of freedom, and one cannot as-
sociate individual singular values with either spatial or tem-
poral diversity.

Tia T _ _
_ / QuH (t - u, ) / dr 3 Pe(w)df(r)s(r).

5.1. Diagonal kernel

Here the M x M kernel (10) is diagonal, and the m-th di-
agonal element is itself a scalar kernel, k,,, (u, 7). In turn,
each scalar kernel has an expansion in terms of eigenvalues
and scalar eigenfunctions. The corresponding vector-valued
eigenfunctions of the matrix kernel have all but one of their
M components equal to zero. Thus the svd has a natural
double-index form,

M oo
H(t - T, T) = Z Z Q_smq (t) Umgq 1/1mq (T) ’
m=1qg=1
T E [Ti07Til]7 te [T007T01]7 (19)

where the m-index denotes space,ithe g-index denotes time,
and only the m-th component of ¢, (7) is nonzero, where

Ti1

A7 ki (1, T) g (T)]m = Vi g ()]
Tio

u € [Ti07Ti1]7 m = ]-7 7M7 q= 1525"' (20)
5.2. Separable impulse response

A separable impulse response, characteristic of the flat-fading
multiple-antenna channel, is equal to the product of a con-
stant matrix, G, and a scalar impulse response, f(t — 7, 7),

Hit-7,71)=Gf(t—71,7). 21

In turn, each of the two factors has its own svd,

M
G = Z Qm ,UmB;rn:
m=1
flt=m1) = D 0,(t) 29 & (1)" .
g=1

Again we have a double-index (e.g., space-time) singular
value decomposition of the form (19), where

‘qu (t) = ap 0,1 (t) )
B Umq = /fm 2q»
Vimg(T) = Bm&q(1).

5.3. Time-invariant channel, large time-bandwidth prod-
uct

Here the channel impulse response is H(t — 7,7) = H(t —
T), whose matrix-valued frequency response is

H(f) = / du H(u) e 27/

We specify the same input and output intervals of [-T/2, T /2],
and we assume that the frequency response is smooth over
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frequency intervals of duration comparable to 1/7. Then
asymptotically, for large time-bandwidth products, T'B >
1, where B is the channel bandwidth, the channel impulse
response again has a double-index svd,

H(t —7,7) ZZ@M (t) Vg ¥y (1),
e [—T/2,T/T;], lfel [-T/2,T/2], (22)
where
Gmg(t) = Qg T IVT
Pmg(T) = B =™ VT

where the {@mq}, {Bmq}> and {v,,} constitute the svd of
the matrix-valued frequency response, evaluated at the fre-

quency f = ¢q/T,

Q/T) Z Qmq Umg qu (23)

m=1

Multiple-antenna OFDM (orthogonal frequency division
multiplex) techniques can be interpreted in light of the svd
(22). The wideband complex pulse that is fed to each trans-
mit antenna is a linear combination of harmonically related
sinewaves, that are extended periodically (the cyclic prefix)
beyond the interval [-7"/2,T'/2] by an amount that exceeds
the duration of the channel impulse response. This ensures
that all of the output sinewaves exist in a transient-free state
over an interval of duration greater than 7'.

5.4. Ideal bandlimited scalar channel

The ideal bandlimited scalar channel has an impulse re-
sponse

B/2 '
h(t—-71) = / df 7 f(t=7)
~B/2
(Bt —
_ sin(mB(t — 1)) ‘ (24)
w(t —71)
The svd of the channel, for the input interval [-7'/2,T/2],
and the output interval (—oo, 00) is

h(t — 1) Z Ge(t) veYe(T
te (—oo,oo), TE€[-T/2,T/2]. (25)

The {¢¢(t)} are called prolate spheroidal wave functions.
The covariance kernel for which the {t¢(7)} are eigen-
functions is equal to the channel impulse response itself, a
property unique to this channel. This property implies that
the output eigenfunctions, in addition to being orthonormal

over the infinite time interval, are also orthogonal over the
finite interval [—7'/2,T'/2]. To see this, we proceed as fol-
lows

T/2
vedet) = / A=), 1€ (20,20
T/2
_ / dr k(t — 1) 3y (7)
—T/2
= vie(t), te[-T/2,T/2]. (26)

As a result of equating the first and last terms of the above
equations, we have

Ge(t) =vebe(t), te[-T/2,T/2], £=1,2,---
The double-orthogonality of the ¢,(t) implies that the

svd representation (25), where the output interval is (—o0, 00),

yields a second svd representation where the output interval
is[-T/2,T/2],

h(t —7) Zw ) V7 (T

te [—T/2,T/2], re[-T/2,T/2]. @7)

6. CONCLUSIONS

The svd of the matrix-valued impulse response is a powerful
tool that enables us to analyze waveform channels with the
same facility that we analyze ordinary matrix operations.
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