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ABSTRACT

The singular value decomposition (svd), a standard tool
for theoretical and computationalmatrix analysis, represents
a matrix as an ordered product of a unitary matrix, a non-
negative, real diagonal matrix, and a second unitary ma-
trix. Our contribution is to extend the svd representation
to a matrix-valued impulse response. The representation in-
volves a countably infinite number of vector-valued eigen-
functions and scalar singular values, and it provides the most
concise and elegant description of the action of a matrix-
valued filter (for example, a space-time communication chan-
nel) when driven by a finite-duration input signal.

1. INTRODUCTION

The singular value decomposition (svd) represents a ���
complex matrix � as a product, � � ����

�, where ��

is a diagonal square matrix having row and column dimen-
sions �������� whose diagonal elements ����, the sin-
gular values, are real and nonnegative, and � and � are
unitary matrices having row-dimensions of � and � re-
spectively, and column dimensions equal to�������� [6].
The superscript “�” denotes “conjugate transpose”. The svd
provides the simplest way to visualize the action of matrix
multiplication, and it is a natural theoretical and compu-
tational tool for formulating problems of over- and under-
determined systems of linear equations.

Our contribution is to extend the svd representation to
the matrix-valued impulse response of a space-time linear
channel. The mathematical basis for the svd is the repre-
sentation by Kelly and Root [1] of a nonnegative-definite
matrix-valued kernel in terms of scalar eigenvalues and vec-
tor eigenfunctions. We discuss only the continuous-time
case, but analogous discrete-time results hold also.

2. NOTATION

A complex matrix-valued impulse response is easily moti-
vated by a multiple-antenna wireless link having � trans-
mit antennas and � receive antennas. Over a time interval
����� ���	, an input signal, denoted 
����, an � � � vector
function of input time � , drives the � transmit antennas.
The resulting output at the � receive antennas, denoted

	�
�, is an � � � vector function of output time 
, where


	�
� �

� ���

���

�� ��
� �� �� 
���� � (1)

where ��
 � �� �� is an � �� matrix whose �
-th ele-
ment is the impulse response, ����
 � �� ��, that connects
the
-th transmit antenna to the �-th receive antenna, where
the impulse is applied at time � . Any linear time-varying,
delay-spread channel is described by such an impulse re-
sponse. For a time-invariant channel the dependence of
��
� �� �� on its second variable vanishes.

3. SVD OF MATRIX IMPULSE RESPONSE

Let��
��� �� be a��� time-varying impulse response.
Then for any specified finite input interval ����� ���	 and any
specified output interval ����� ���	, either finite or infinite,
the impulse response has the following exact representation
over the indicated ranges of input time, � , and output time,

,

��
� �� �� �

��
���


���
��� 
�
�
�
����

� � ����� ���	� 
 � ����� ���	� (2)

where ����, the singular values, are nonnegative real scalars,
�
���
��, the output eigenfunctions, are complex��� func-
tions of 
 that are orthonormal over the output interval, and
� 
������, the input eigenfunctions, are complex��� func-
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tions of � that are orthonormal over the input interval,
� ���

���

�� �������
������ � Æ��� � � �� �� � � � � � � �� �� � � � �

(3)

� ���

���

�� ���� ���
������ � Æ��� � � �� �� � � � � � � �� �� � � � �

(4)

Note that the input and the output eigenfunctions are not
eigenfunctions of the impulse response, but rather eigen-
functions of certain covariance kernels. In general a spec-
ification of different input or output intervals results in a
different svd representation, in the same way that removing
rows or columns from a matrix changes its svd.

The svd simultaneously diagonalizes the channel over
both space and time. For a given input, �	���, the output of
the channel (1) takes the form

�
��� �

� ���

���

��
�

������

�������� ��
�
� ��� �	��� �

� � ����� ���� � (5)

After multiplying both sides of the expression by ������� (on
the left), and integrating with respect to �, we obtain


� � �� 	� � � � �� �� � � � � (6)

where the �	�� and �
�� are the scalar coefficients that rep-
resent the input signal and the output signal with respect to
the orthonormal � ������� and �������� respectively,

	� �

� ���

���

�� ���� ����	��� � 
� �

� ���

���

�� ��������
��� � (7)

The attainable values of the output �
��� are linear combina-
tions of those �������� whose associated singular values are
significantly greater than zero.

The power of the svd is immediately appreciated by
considering the problem of choosing a finite duration in-
put function �	���, subject to an energy constraint, to ap-
proximate a desired output function �����, over a specified
interval, in the mean-square sense. To do so we expand
the input and output functions in terms of the input and out-
put eigenfunctions respectively, and formulate the following
minimization problem,

���

�	��

��
�

��
���

��� � �� 	��
� � 


��
���

	��

��
� � (8)

where 
 is a Lagrange multiplier. The optimum solution for
the coefficients of the input waveform is

	� �
�� ��


� ���
� � � �� �� � � � � (9)

where 
 is adjusted to satisfy the specified energy constraint.
In contrast, this problem could not be tackled directly with
Fourier methods because of the finite-time support of the
input waveform.

4. DERIVATION OF SVD

We begin with the matrix version of Mercer’s theorem [1,
5]. Starting with the � �� channel impulse response, we
define a � �� Hermitian nonnegative-definite covariance
kernel, ���� ��, as follows,

���� �� �

� ���

���

������� �� ������ �� �� � (10)

Under reasonable mathematical conditions, Kelly and Root
[1] proved that the kernel can be expanded in terms of vector
eigenfunctions and scalar eigenvalues as follows,

���� �� �

��
���

������ �
�

�
���� ����

� � ����� ����� � � ����� ����� (11)

where
� ���

���

�� ���� �� ������ � ���
�������

� � ����� ����� � � �� �� � � � � (12)

the ����� are nonnegative real eigenvalues, and the � �������
are � � � orthonormal eigenfunctions that satisfy (4).

Next we use the vector-valued eigenfunctions � �������
as inputs to the channel to obtain��� vector-valued scaled
output functions ��������. First, consider the case where the
eigenvalue, ��� , is strictly positive. Then we define the cor-
responding output function as follows,

������ �
�

��

� ���

���

�� ���� �� �� ������� (13)

A successive application of the definition (13), the definition
of the covariance kernel (10), the eigenfunction/eigenvalue
relation (12), and the orthogonality of the eigenfunctions
(4) proves that the �������� that are associated with strictly
positive eigenvalues are mutually orthonormal,

� ���

���

�� �������
������

� Æ��� � �� � 	 �� � 
� �� � 
 � (14)

The output of the channel resulting from an application of
an eigenfunction to the input of the channel whose eigen-
value is zero is equal to zero, because otherwise, a “squar-
ing” and integration of the expression with respect to �would

IV - 914

➡ ➡



imply that the eigenvalue is greater than zero - a contradic-
tion. For strictly positive eigenvalues we rewrite (13) as

������ �� �

� ���

���

������ �� �� ������

� � ����� ����� 	 � �� �� � � � 
 (15)

Now we multiply both sides of (15) (on the right) by �������,
and sum over 	 such that �� is positive,�

������

�������� ��
�
� ���

�

� ���

���

������ �� ��
�
������

������ ��
�
� ����

� � ����� ����� � � ����� ���� 
 (16)

We claim that� ���

���

������ �� ��
�
������

������ ��
�
� ��� � ���� �� �� 


(17)

To show this we apply an input to the channel which can
be expressed as ����� � ������ � ������, where ������ is
spanned by the eigenfunctions having positive eigenvalues,
and where ������ is orthogonal to those same eigenfunc-
tions,

������ �

� ���

���

��
�
������

������ ��
�
��������� � (18)

and ������ � ������������. Of the two additive components
of �����, the channel responds only to ������. (It can be shown
that the energy at the output of the channel due to ������ is
equal to zero.) The channel response to ����� is identical to
the response to ������, so

� ���

���

������ �� �������

�

� ���

���

������ �� ��

� ���

���

��
�
������

������ ��
�
� �������� 


This proves (17) which, when substituted into (16) yields
the desired svd representation.

5. SPECIAL CASES OF SVD

We now consider some special cases of the svd: the diag-
onal kernel, an impulse response that is separable in space
and time, the time-invariant channel for large time-bandwidth
product, and finally the ideal bandlimited scalar channel.
For three of these cases the svd exhibits distinct space-time
structure. In general the svd makes no distinction between
spatial and temporal degrees of freedom, and one cannot as-
sociate individual singular values with either spatial or tem-
poral diversity.

5.1. Diagonal kernel

Here the 
 �
 kernel (10) is diagonal, and the �-th di-
agonal element is itself a scalar kernel, ����� ��. In turn,
each scalar kernel has an expansion in terms of eigenvalues
and scalar eigenfunctions. The corresponding vector-valued
eigenfunctions of the matrix kernel have all but one of their

 components equal to zero. Thus the svd has a natural
double-index form,

���� �� �� �

��
���

��
���

������� ���
�������� �

� � ����� ����� � � ����� ���� � (19)

where the�-index denotes space, the �-index denotes time,
and only the �-th component of ������� is nonzero, where

� ���

���

�� ����� ��� ��������� � ���� �
��������� �

� � ����� ����� � � �� � � � �
 � � � �� �� � � � 
(20)

5.2. Separable impulse response

A separable impulse response, characteristic of the flat-fading
multiple-antenna channel, is equal to the product of a con-
stant matrix, �, and a scalar impulse response, ���� �� ��,

���� �� �� � ����� �� �� 
 (21)

In turn, each of the two factors has its own svd,

� �
��
���

��� �� ���� �

���� �� �� �

��
���

����� �� �����
� 


Again we have a double-index (e.g., space-time) singular
value decomposition of the form (19), where

������� � ��� ����� �

��� � �� �� �
������� � ��� ����� 


5.3. Time-invariant channel, large time-bandwidth prod-
uct

Here the channel impulse response is ���� �� �� � ����
��, whose matrix-valued frequency response is

	���� �

�
������ ����	
� 


We specify the same input and output intervals of ������ ����,
and we assume that the frequency response is smooth over
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frequency intervals of duration comparable to ��� . Then
asymptotically, for large time-bandwidth products, �� �
�, where � is the channel bandwidth, the channel impulse
response again has a double-index svd,

���� �� �� �
��
���

��
���

������� ���
�	������ �

� � ������ ����� � � ������ ���� � (22)

where

������� � �
�� �
������� �

�
� �

�	����� � ���� �
������� �

�
�

where the ��
���, ������, and ����� constitute the svd of
the matrix-valued frequency response, evaluated at the fre-
quency 
 � ��� ,

������ � �
��
���

�
�� ���
����� � (23)

Multiple-antennaOFDM (orthogonal frequency division
multiplex) techniques can be interpreted in light of the svd
(22). The wideband complex pulse that is fed to each trans-
mit antenna is a linear combination of harmonically related
sinewaves, that are extended periodically (the cyclic prefix)
beyond the interval ������ ���� by an amount that exceeds
the duration of the channel impulse response. This ensures
that all of the output sinewaves exist in a transient-free state
over an interval of duration greater than � .

5.4. Ideal bandlimited scalar channel

The ideal bandlimited scalar channel has an impulse re-
sponse

���� �� �

� 	��

�	��

�
 ����
�����

�
	
������ � ���

���� ��
� (24)

The svd of the channel, for the input interval ������ ����,
and the output interval ������ is

���� �� �

��
���

����� �� 	���� �

� � ������� � � ������ ���� � (25)

The ������� are called prolate spheroidal wave functions.
The covariance kernel for which the �	����� are eigen-

functions is equal to the channel impulse response itself, a
property unique to this channel. This property implies that
the output eigenfunctions, in addition to being orthonormal

over the infinite time interval, are also orthogonal over the
finite interval ������ ����. To see this, we proceed as fol-
lows

�� ����� �

� ���

����

�� ���� ��	���� � � � ������

�

� ���

����

�� ���� ��	����

� ��� 	���� � � � ������ ���� � (26)

As a result of equating the first and last terms of the above
equations, we have

����� � �� 	����� � � ������ ���� � � � �� �� � � � �
The double-orthogonality of the ����� implies that the

svd representation (25), where the output interval is ������,
yields a second svd representation where the output interval
is ������ ����,

���� �� �
��
���

	���� �
�
� 	���� �

� � ������ ����� � � ������ ���� � (27)

6. CONCLUSIONS

The svd of the matrix-valued impulse response is a powerful
tool that enables us to analyze waveform channels with the
same facility that we analyze ordinary matrix operations.
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