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ABSTRACT

The problem of joint transmitter and receiver design for
multi-input multi-output (MIMO) channel shortening for fre-
quency-selective fading channel is addressed. A frequency
domain approach is followed which is equivalent to infinite
length time-domain channel shortening equalizers (TEQ).
A practical joint space and frequency waterfilling algorithm
is also provided for optimum transmit power loading. It is
demonstrated that the finite length TEQ suffers from a floor-
ing effect on the compression ratio performance, whereas
the proposed method overcomes this disadvantage. The noise
amplification and the compression performance of the pro-
posed joint tranceiver method is found to be better than both
finite and infinite length receiver-only designs, with a gain
of order of 3dB for a 2x2 MIMO channel.

1. INTRODUCTION

Maximum-likelihood sequence estimation (MLSE) and multicar-
rier modulation (MCM) are effective tools to mitigate frequency-
selective fading channels. However, the computational complexity
of MLSE grows exponentially with the multipath spread of the
channel. Moreover, in MCM, a cyclic prefix of comparable length
with the multipath spread has to be appended to the transmission
frame. Clearly, the length of the multipath spread either causes
an increase in the complexity of the receiver or a decrease in the
throughput of the system. In order to avoid these disadvantages,
the channel should be shortened to a desired length by the aid of a
channel shortening filter. When compared to the complete equal-
ization of the channel, channel shortening filter provides better per-
formance due to the extra degree of freedom it possesses.

Channel shortening filter design has been a hot research topic
since 1970’s, starting with [1]. Although there have been many
designs satisfying different criteria [2], the minimum-mean square
error (MMSE) criterion has been the most widely investigated one.
In this paper, we will address the channel shortening problem for
multi-input multi-output (MIMO) channels under the MMSE cri-
terion with the orthogonality constraint [3] imposed on the target
impulse response (TIR).

A joint transmitter and receiver filter design approach for chan-
nel shortening is provided. Even though joint transmitter receiver
design exists for equalization, to our best knowledge, it is the first
time this is addressed for a channel shortening filter design. If the

transmitter has the channel state information (Tx-CSI), the pro-
posed algorithm may prove to be useful since it provides much
better performance compared to a receiver-only design. For exam-
ple, in wireline systems, such as xDSL, the rate of change of the
channel is very slow and it is possible for the transmitter to getCSI.

A frequency-domain approach similar to [4], [5] is adopted
and the resulting design is equivalent to infinite length time-domain
equalizer (TEQ). Under certain transformations, it will be demon-
strated that the MIMO system can be decoupled into a set of in-
dependent single-input single-output (SISO) subsystems, greatly
simplifying the design procedure. The optimization results in a
space and frequency waterfilling algorithm which enhances the
performance. We will provide a practical waterfilling algorithm
which finds the optimum setting in a finite number of iterations, in
contrast to [4] where this can be infinite.

A function in the time domain will be denoted by f(k) and
its frequency response by f (ω) . A vector function will be repre-
sented by small boldface, f (ω) , whereas a matrix function will be
denoted by capital boldface, F(ω) .

2. PROBLEM STATEMENT

Consider the block diagram given in Figure 1. It corresponds to
the joint transmitter and receiver design problem of MIMO chan-
nel shortening based on the MMSE criterion. The blocks in the up-
per branch correspond to the transmitter filter, C(ω) , the channel,
H(ω) , and the receiver filter, Q(ω) , all in their frequency response
representations. The number of transmit antennas is assumed nT

whereas the number of receive antennas is nR. It is assumed that
the number of input data streams is ni. Therefore the dimensions
of C(ω), H(ω), and Q(ω) are nT ×ni, nR×nT , and ni×nR, re-
spectively. The data d(k) and the noise n(k) have power spectral
density matrices Φdd(ω) and Φnn(ω) with dimensions ni × ni

and nR × nR, respectively.
Although the signals and filters on the upper branch exist phys-

ically, the lower branch is a virtual one representing the desired
model and the upper branch is aimed to approximate the lower
one. The ni × ni filter B(ω) is named as the target impulse re-
sponse (TIR) and it represents the target system model which is the
convolution of the transmitter and receiver filters and the channel.
The ultimate goal is to shorten the original channel of length nH

to an equalized one with much shorter length, nB , i.e. nB < nH .
Hence, the TIR can be written in the z-domain as follows

B(z−1) = B0 + B1z
−1 + · · · + BnB−1z

−(nB−1) (1)

where Bk, k = 0, ..., nB − 1 are the ni × ni matrix taps of the
TIR at the corresponding delay. The term e−jωmI accounts for the
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Fig. 1. The structure of the channel shortening problem of a
MIMO frequency selective fading channel, H(ω), where the trans-
mitter filter C(ω), the receiver filter Q(ω) and the target impulse
response B(ω) are jointly optimised to minimise the mean square
error criterion depending on the error signal ε(k).

delay which is an important parameter in FIR filter design as it is
influencing the performance [3]. However, it will be demonstrated
later that the present design is insensitive to this delay.

The ni × 1 error signal ε (k) is defined as the difference be-
tween the desired signal z(k) at the output of the TIR, and the
equalized signal ẑ(k) at the output of the receiver filter as follows

ε (k) = z (k)−ẑ (k) (2)

= [q−m
B (k)−Q(k)∗H(k)∗C(k)]∗d (k)−Q(k)∗n(k) (3)

where q−1 is the unit delay operator and ‘*’ denotes the convolu-
tion operator. Our goal is to minimize the mean square error

J(Q,C,B) = trE{ε (k) εH (k)}. (4)

Substituting (3) into (4) and applying Parseval’s formula, we
obtain (5) on the top of the next page.

Without any constraints, the optimization will converge to the
trivial solution of B = Q = 0 and C = ∞ which is meaningless.
Therefore, we impose the limited transmit power constraint on C

as
tr

1

2π

∫ π

−π

C (ω) Φdd (ω)CH (ω) dω ≤ Po (6)

and the orthogonality constraint on B as

1

2π

∫ π

−π

U
H (ω)B (ω)BH (ω)U (ω) dω = I (7)

for some unitary transformation U(ω) which will be explained
shortly. In the sequel, the parenthesis (ω) will be dropped where
convenient.

3. RECEIVER FILTER DESIGN

The optimum receiver filter Qopt(ω) can be found by setting the
gradient of J in (5) with respect to Q(ω) to zero

Qopt=e−jmω
BΦddC

H
H

H(HCΦ
dd

C
H
H

H + Φnn)−1. (8)

Substitution of (8) into (5) yields

J(C,B)=tr
1

2π

∫ π

−π

{B[Φ−1
dd

+C
H
H

H
Φ

−1
nnHC]−1

B
H}dω. (9)

4. DIAGONALIZATION

Minimization of (9) with respect to C(ω) and B(ω) is not straight-
forward due to the matrix structure involved and the constraints in
(6) and (7). The design procedure is greatly simplified by casting

the problem into a set of independent single-input single-output
(SISO) subsystems, through certain transformations as follows.

Consider the eigendecomposition of the spectral density of the
input d(k), Φdd(ω) as

Φdd(ω) = U(ω)Kdd(ω)UH(ω) (10)

which is performed at every distinct frequency ω. U(ω) is an ni×
ni unitary matrix, Kdd(ω) is an ni × ni full rank diagonal matrix
with components κi(ω) > 0 which are the eigenvalues of Φdd(ω).
Also perform the following eigendecomposition

H
H(ω)Φ−1

nn(ω)H(ω) =[
V(ω) V̄(ω)

] [
Λ−1

nn(ω) 0

0 0

] [
VH(ω)
V̄H(ω)

]
(11)

where the P × P diagonal matrix Λ−1
nn(ω) contains the non-zero

eigenvalues λ−1
i (ω) of HHΦ−1

nnH for a particular frequency ω
and P is defined as P = min{nT , nR, rank{H}}. Without loss
of generality λi(ω) are assumed to be sorted in ascending order,
i.e. 0 < λ1 ≤ λ2 ≤ · · · ≤ λP . The nT × P orthogonal matrix
V(ω) forms a basis for the range space of HHΦ−1

nnH whereas
the nT × (nT − P ) orthogonal matrix V̄(ω) constitutes a basis
for the null space. Also make the following two definitions on the
transmitter filter and the TIR as

F(ω) � V
H(ω)C(ω)U(ω) (12)

Bd(ω) � U
H(ω)B(ω)U(ω). (13)

With the substitution of (10)-(13),theMSEin (9) can be expressedas

J(F,Bd) = tr
1

2π

∫ π

−π

{Bd[K
−1
dd

+F
HΛ−1

nnF]−1
B

H
d }dω. (14)

Based on the results in [4], it can be proven that the structure
of the optimum filters which minimize J(F,Bd), i.e. Fopt(ω)
and Bd,opt(ω) are diagonal when κi, and the diagonal entries of
Bd,opt(ω), i.e. bd,i(ω) , i = 1, ..., ni are ordered such that

κ1 |bd,1|
2 ≥ κ2 |bd,2|

2 ≥ · · · ≥ κni
|bd,ni

|2 . (15)

A detailed proof can be found in [6]. With the diagonality of
Fopt(ω) and Bd,opt(ω), (14) can be expressed as a set of inde-
pendent SISO subsystems as follows

J=

⎧⎪⎪⎨
⎪⎪⎩

1
2π

∫ π

−π

ni∑
i=1

|bd,i|
2
κiλi

λi+κi|fi|
2 dω ,ni≤P

1
2π

∫ π

−π

P∑
i=1

|bd,i|
2
κiλi

λi+κi|fi|
2 dω+ 1

2π

∫ π

−π

ni∑
i=P+1

|bd,i|
2κidω ,ni>P

(16)
where fi(ω) , i = 1, ..., P are the diagonal elements of Fopt(ω).
In this paper, we consider only the case of ni ≤ P , and the case
ni > P can be shown to be non-existent as in Remark 3. Also
with the substitution of (10)-(13) into (6) and (7), the constraints
can be written as

ni∑
i=1

1

2π

∫ π

−π

κi |fi|
2 dω ≤ Po (17)

1

2π

∫ π

−π

|bd,i|
2 dω = 1, ∀i. (18)

The design problem is now casted as finding the optimum
bd,i(ω) and |fi(ω)|2 in (16) subject to (17) and (18) which ap-
pears to be not straightforward. However, realizing that (16) is
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J(Q(ω) ,C(ω) ,B(ω))= tr
1

2π

∫ π

−π

{[
e−jωm

B(ω)−Q(ω)H(ω)C(ω)
]
Φdd (ω)

[
e−jωm

B(ω)−Q(ω)H(ω)C(ω)
]H

+Q(ω)Φnn(ω)QH(ω)

}
dω (5)

jointly convex for the sets {B} = {bd,i, ∀i} and {F} = {|fi|
2,

∀i}, hence J has a unique global minimum, an iterative approach
is proposed, i.e. optimum {bd,i} is found by setting {|fi|

2} fixed
and in the next round optimum {|fi|

2} is found by setting {bd,i}
fixed. If this is repeated several times, the optimization converges
to the vicinity of the global minimum. In fact, our simulations
revealed that four iterations on average are adequate for conver-
gence.

5. TRANSMITTER FILTER OPTIMIZATION

For a fixed set of {bd,i(ω)}, the optimum set of {|fi(ω)|2} for J in
(16) with the power constraint (17) is obtained using the Lagrange
multiplier 1/γ2 as

|fi (ω)|2 = max

{
γ

√
|bd,i (ω)|2

λi (ω)

κi (ω)
−

λi (ω)

κi (ω)
, 0

}
(19)

, i = 1, ..., P, for some waterlevel γ and ω ∈ [0, 2π). The
max{·, 0} operator is used to avoid negative power levels. Divid-
ing the frequency range into bins by ωl = 2πl/N , l = 0, ..., N −

1, and defining ak,l =
√

|bd,k(ωl)|
2 λk(ωl) /κk(ωl) and bk,l =

λk(ωl) /κk(ωl) , this expression can be put in an algorithm form
as an extension of [5] as follows

1. Let the set of ordered pairs (k, l) ∀k, l are sorted in as-
cending order according to the quotients q(j) = ak,l/bk,l,
k = 1, ..., P, l = 0, ..., N −1 and j = lP +k = 1, ..., NP
yielding an NP × 1 vector S,

2. Calculate the waterlevel γ according to

γ =
(
Po +

∑
j∈S

ak,l

)
/

∑
j∈S

bk,l,

3. If the last element of the set S accepts a negative value, i.e.
|fk(ωl)|

2 = γbk,l − ak,l < 0 then remove the pair (k, l)
from S and move the cursor to one upper position and go
to Step 2,

4. If no negative value is left, stop the loop and calculate the
final power levels for each bin according to (19) using the
waterlevel obtained from the last step.

This algorithm finds the optimum transmitter filter coefficients
in at most NP loops.

6. TIR OPTIMIZATION

Now, keeping the transmitter filter F fixed, we compute the opti-
mum TIR coefficients. Similar to the definition of TIR in (1) define
the transformed TIR for each subsystem as follows

bd,i(ω) = bd,i,0 + bd,i,1e
−jω+· · ·+ bd,i,nB−1e

−jω(nB−1) (20)

= b
T
d,iw (21)

for all i, bd,i =
[
bd,i,0 bd,i,1 · · · bd,i,nB−1

]T
and w=

[
1 e−jω

· · · e−jω(nB−1)
]T

. Substitution of (21) into (16) and (18) yields

minimize Ji = b
H
d,iRibd,i (22)

subject to b
H
d,ibd,i = 1 (23)

where

Ri =
1

2π

∫ π

−π

w
∗ κiλi

λi + κi |fi|
2 w

T dω (24)

[Ri]k,l
=

1

2π

∫ π

−π

κiλi

λi + κi |fi|
2 ejω(k−l)dω. (25)

However, observe that (25) is the inverse Fourier transform of the
spectral density function κiλi/(λi + κi |fi|

2), hence it is an au-
tocorrelation matrix. Therefore, the minimization in (22)-(23) be-
comes the standard eigenvalue problem, and the solution for bd,i

is the eigenvector corresponding to the smallest eigenvalue of Ri.
Repeating this procedure for all ni subsystems, one can find the
optimum TIR for the MIMO system by substituting bd,i(ω) into
Bd(ω).

7. REMARKS

1. The issue of the starting point of the iteration of finding the
optimum transmitter filter and TIR is not important since it can be
proven that (16) is convex for all bd,i(ω) ∈ C and |fi(ω)|2 ∈ R0+

[6], hence Bd = F = I is a logical initialization.
2. From (19) it is observed that the phase of fk is not important.
Hence, the phase of fk does not affect the corresponding target
impulse response design in the subsequent step.
3. In (16), ni > P means the number of input streams is greater
than the available eigenmodes. However, only P streams can be
transmitted from these eigenmodes, and ni − P streams will be
lost. Since the transmitter knows the CSI, hence P , it must limit
the number of input stream to P . Therefore, practically the case
ni > P should not exist.
4. From (8) and (9) it can be seen that the e−jωm term only ap-
pears as a delay in the optimum receiver filter design and does
not affect the minimization of the cost function J(C,B). This
property, which was also reported by Martin, et al in [7], can be
explained as follows. When the filter length is finite, the error auto-
correlation matrix, from which the TIR is calculated, is Hermitian
symmetric, but not Toeplitz. This can be seen using the notation of
[3], i.e. Ree = [R−1

xx
+HHR−1

nnH]−1 where Ree, Rxx and Rnn

are the autocorrelation matrices of error, input and noise. The term
H in this case is the convolution matrix composed of the channel
coefficients. Due to the truncation at the edges of this convolution
matrix, the positions close to the edges of the autocorrelation ma-
trix Ree does not provide the actual autocorrelation function. It is
reported in [3] that the optimum value of the delay parameter tends
to be in the center of Ree, which is more closer to the actual au-
tocorrelation function compared to the edges. As the length of the
filter increases, Ree tends to be Toeplitz, and all delays provide the
same performance. In fact, in our case the spectral density func-
tion [Φ−1

dd
+CHHHΦ−1

nnHC]−1 is the Fourier transform of such
a Toeplitz error autocorrelation matrix. Hence, the optimization is
insensitive to the delay m.

8. SIMULATIONS AND RESULTS

One of the measure of performance adopted in this study is the
shortening signal-to-interference-plus-noise ratio (SINR) at the out-
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Fig. 2. Compression ratio comparison of the finite length time
domain design for filter lengths, 16, 64 and 256 to the proposed
frequency domain designs with both receiver-only and joint trans-
ceiver processing.

put of the channel shortening filter defined as the ratio of the en-
ergy of the equalized channel contained in the window determined
by the TIR to the out-of-window energy plus noise power. Another
related performance measure is the compression ratio defined as
the ratio of the total energy that remains in the window after short-
ening, to the total energy in the entire equalized channel impulse
response.

For comparison reason, the performance of the proposed fre-
quency-domain method is also evaluated for the receiver-only case
by setting C = I. The performance of the proposed frequency do-
main approach for both receiver-only and joint transceiver is com-
pared to that of the finite length time domain MMSE scheme of [3]
with filter lengths 16, 64 and 256. A 16 tap 2×2 MIMO channel is
shortened to a 2 tap equalized one. For the joint transceiver design,
the number of iterations is ten, however, it is observed that most
of the time the optimum is attained within 3-4 iterations. Also the
frequency range [0, 2π) is divided into 256 bins.

Figure 2 provides the compression ratio comparison of the
proposed frequency domain method for both joint transceiver and
receiver-only cases and for the FIR channel shortening filters. It
is observed that the joint transceiver scheme outperforms the fre-
quency domain receiver-only design in low to medium SNR re-
gion. This is due to the extra degree of freedom that the transmit-
ter has in order to mitigate the channel noise. On the other hand,
the performance of the FIR design (except for very long lengths)
is worse than that of the proposed frequency domain designs and
experiences a floor in performance due to the incapability of equal-
izing the channel with finite length.

Consistent with the result in Figure 2, the SINR curve has sim-
ilar behaviour as seen in Figure 3. In this case the noise power is
also taken into account. It is seen that while there is a flooring ef-
fect in the FIR filter performance, the proposed method has a linear
curve. Except very long FIR filter, the frequency domain approach
achieves much better performance. Moreover, the gain obtained
by employing joint transceiver algorithm is 3 dB better than that
of the frequency domain receiver-only design at high SNR.

9. CONCLUSIONS

In this paper, we proposed a joint transmitter and receiver design
for the MMSE MIMO channel shortening filter problem. It is
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Fig. 3. SINR comparison of the finite length time domain design
for filter lengths, 16, 64 and 256 to the proposed frequency domain
designs with both receiver-only and joint transceiver processing.

demonstrated that with proper transformations, the problem can
be expressed using a set of independent SISO subsystems. Since a
frequency domain approach is equivalent to infinite length filters,
the performance of the proposed method is much better than that
of an FIR channel shortening filter. Due to the extra degree of free-
dom that the transmitter filter possesses, the noise amplification is
reduced and the compression ratio is enhanced. Hence, the pro-
posed method is found to be suitable for scenarios where CSI is
available at the transmitter.
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