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ABSTRACT

By imposing additional constraints in the downlink beamforming
optimization, more general Quality of Service (QoS) measures
than the average Signal to Interference and Noise Ratio (SINR)
alone, can be introduced.

Herein a rapidly converging algorithm solving the downlink
beamforming problem with additional indefinite quadratic con-
straints on the beamforming vector is presented. The proposed
algorithm is significantly faster than the previously proposed so-
lution, which involves semidefinite programming. Also, the al-
gorithm is easy to implement, since it only involves eigenvalue
problems.

1. INTRODUCTION

By deploying antenna arrays at the transmitter, beamforming tech-
niques can be used to exploit spatial channel knowledge to increase
spectral efficiency and downlink capacity.

The objective of the downlink beamforming problem is to find
beamforming vectors and allocate power to ensure that each user
achieves a targeted QoS. The average SINR is commonly taken
as the QoS measure. There are however many cases in which the
QoS measure should take other factors than average SINR into
consideration, which motivates the use of additional constraints.

The unconstrained downlink beamforming problem was first
solved in [1]. A fast algorithm, also coping with infeasible scenar-
ios, was later developed in [2]. A conceptually different semidefi-
nite relaxation approach was presented in [3].

In [4], additional indefinite constraints on the beamformer
were used to ensure a minimum level of multi-path diversity in
CDMA systems. An algorithm, based on semidefinite program-
ming, was developed to solve the constrained downlink beamform-
ing problem. Other applications of indefinite constraints include
limiting interference in certain spatial directions.

Herein the algorithm proposed in [2] is modified to allow in-
definite constraints on the beamformer. The proposed algorithm
is considerably faster than the semidefinite approach suggested in
[4]. The implementation of the algorithm proposed herein only
involves solving eigenvalue problems, contrary to the previously
known algorithm, which involves semidefinite programming.

1.1. Signal model

In this work a downlink single cell scenario is considered. The
base station is assumed to be equipped with an M element array
of antennas. The signal, si(t), intended for user i is mapped onto
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the array by the beamforming vector, ui ∈ C
M , which throughout

this work is assumed normalized to ‖ui‖2 = 1.
The signal received by user i, is modeled as

ri(t) =

K∑
k=1

h∗
i (t)uksk(t) + ni(t),

where hi(t) ∈ C
M is the time-varying spatial vector channel to

user i, ni is additive white noise with variance σ2
i and {·}∗ denote

Hermitian conjugate transpose. It is assumed that hi(t), sj(t) and
nk(t) (∀i, j, k) are uncorrelated processes.

Since ui is normalized, the downlink transmission powers are
given by pi = E

{|si(t)|2
}
, which are stacked in the vector p.

The total transmission power is thus given by ‖p‖1. For nota-
tional convenience, the beamformers are also collected in the ma-
trix U = [u1, . . . ,uK ].

By defining the spatial channel covariance matrices as

Ri � E {hi(t)h
∗
i (t)} , 1 ≤ i ≤ K,

the downlink SINR at user i is given by

SINRDL
i (U,p) =

piu
∗
i R̃iui∑

k �=i pku∗
kR̃iuk + 1

, (1)

where R̃i is the scaled covariance matrix R̃i = Ri/σ2
i .

1.2. Problem formulation

The traditional objective of downlink beamforming is to ensure
that each user, i, achieves a target individual SINR, γi. In this
work more general constraints are considered, where in addition to
the SINR targets, the beamforming vectors are required to satisfy
an indefinite quadratic constraint of the form,

u∗
i Ciui ≥ 0, ∀i. (2)

The typically indefinite matrices, Ci, can be chosen arbitrarily to
formulate many types of constraints, as mentioned above.

For notational convenience, the set C � {U|u∗
i Ciui ≥ 0 ∀i}

is defined to denote matrices U that satisfy the indefinite con-
straints (2).

The SINR constraints can be formulated in many different
ways. A convenient measure is the minimum, normalized, down-
link SINR, which is defined as

SINRDL
min(U,p) � min

1≤i≤K

SINRDL
i (U,p)

γi
. (3)
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Hence SINRDL
min(U,p) ≥ 1 corresponds to all SINR targets being

met.
Two different problem formulations are considered in this

work. The first formulation is useful, primarily to verify that the
targeted SINRs are feasible.

P 1. maximize SINRDL
min(U,p) subject to ‖p‖1 ≤ Pmax.

Problem (P1) maximizes the performance of the “weakest”
user, given a maximum transmission power, Pmax. The optimal
value of SINRDL

min is a measure of the spatial separability of the
users. If the optimal SINRDL

min ≥ 1, the SINR targets are feasible,
otherwise actions should be taken to relax the conditions.

At the optimum, the SINRs are balanced [2],

SINRDL
min(Uopt,popt) =

SINRDL
i (Uopt,popt)

γi
, 1 ≤ i ≤ K, (4)

and Problem (P1) is therefore referred to as the SINR balancing
problem.

For feasible scenarios, the second problem formulation (P2)
is of great interest, since it minimizes the inter-cell interference
without violating the SINR targets.

P 2. Minimize ‖p‖1 subject to SINRDL
min(U,p) ≥ 1.

Problem (P2) minimizes the total transmission power, and is
therefore referred to as the power minimization problem.

The two optimization problems are closely related. They are in
fact equivalent if Pmax is chosen as the optimal minimum power
of Problem (P2). The main focus of this work is to provide an
efficient algorithmic solution to the two beamforming problems,
(P1) and (P2), with the beamformers satisfying the non-trivial non-
convex constraint U ∈ C.

2. SOLVING THE UNCONSTRAINED BEAMFORMING
PROBLEMS

The proposed algorithm, solving the constrained beamforming
problem, is closely related to the algorithm proposed in [2], for
the unconstrained case. In this section, the solution to the uncon-
strained beamforming problem is presented, providing the basic
framework for imposing indefinite constraints in Section 3.

By introducing the matrix

D(U) = diag

{
γ1

u∗
1R̃iu1

, . . . ,
γK

u∗
KR̃KuK

}

and the cross-talk matrix

[Ψ(U)]ik =

{
u∗

kR̃iuk, k �= i
0, k = i

,

the SINR constraints are given in matrix form by(
I − DΨ(U)

)
p ≥ D1, (5)

where ≥ is taken element-wise. For optimal U and p, Inequal-
ity (5) is satisfied with equality, in accordance with Equation (4),
and popt can therefore be obtained from Uopt as

popt =
(
I − DΨ(Uopt)

)−1
D1. (6)

2.1. Virtual uplink-downlink duality

There is an interesting duality between uplink and downlink prob-
lems, which motivates the introduction of the, so called, virtual
uplink SINR of user i, SINRVUL

i .

SINRVUL
i (ui,q) � qiu

∗
i R̃iui

u∗
i (

∑
k �=i qkR̃i + I)ui

, (7)

where q = [q1, . . . , qK ]T is the virtual uplink power distribution.
Note that the different SINRVUL for the users are only coupled
through the uplink power distribution q, whereas the optimization
over U is decoupled. The SINR balancing Problem (P4) and the
power minimization Problem (P2) with respect to the virtual up-
link SINRs are therefore much simpler to analyze and to solve.
Theorem 1, proved in [1] and [2], is therefore powerful since it
reduces the complexity of the downlink problem to that of the up-
link.

Theorem 1. For given U and Pmax it holds that

max
p

min
1≤i≤K

SINRDL
i (U,p) =

= max
q

min
1≤i≤K

SINRVUL
i (ui,q), (8)

where the maximizations are constrained by ‖p‖1 ≤ Pmax and
‖q‖1 ≤ Pmax, respectively.

It follows from Theorem 1 that the optimal virtual uplink
beamformer Uopt is also optimal for the downlink, regardless of
which of the Problems (P1) and (P2) is considered. The virtual
uplink power distribution that optimally balances the virtual up-
link SINRVUL

i , is similarly to equation (5) given by

qopt =
(
I − DΨT(U)

)−1
D1. (9)

Note that for feasible U, the elements of qopt are strictly positive
and minimize ‖q‖1 without violating the SINR constraints.

2.2. Algorithmic solutions for unconstrained beamformers

In [2] two algorithms are proposed, solving the unconstrained
downlink SINR balancing Problem (P1) and the power minimiza-
tion Problem (P2), respectively. It was shown that the optimization
could be reduced to two sub-problems,

P 3. qopt(Ũ, Pmax) = arg max‖q‖1≤Pmax
SINRVUL

min (Ũ,q),

P 4. Uopt(q̃) = arg maxU SINRVUL
min (U, q̃)

and that the global optimum of (P1) and (P2) are solved by the
algorithms stated in Table 1, which rapidly converge to the global
optimal values.

In [2], the solution qopt of Problem (P3) is shown to be given
by the eigenvalue problem

Λ(Ũ, Pmax)qext = λmaxqext, (10)

where qext =
(
qopt
1

)
is the eigenvector associated with the

largest eigenvalue λmax of the extended uplink coupling matrix
Λ(Ũ, Pmax), defined as

Λ(Ũ, Pmax) =

[
DΨT(U) D1

1
Pmax

1TDΨT(U) 1
Pmax

1TD1

]
. (11)
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Table 1. Algorithmic solutions to the SINR balancing Prob-
lem (P1) and the power minimization Problem (P2). Below ∆{·}
denotes the difference of a quantity in two consecutive iterations.

(a) Solution of (P1)

1: q̃ = 0
2: repeat
3: Ũ = Uopt(q̃)

4: q̃ = qopt(Ũ, Pmax)
5: until ∆SINRVUL

min ≤ ε
6: p̃ =

(
I − DΨ(Ũ)

)−1
D1

(b) Solution of (P2)

1: q̃ = 0
2: repeat
3: Ũ = Uopt(q̃)

4: q̃ = qopt(Ũ, Pmax)
5: until SINRVUL

min ≥ 1
6: repeat
7: Ũ = Uopt(q̃)
8: q̃ = (I − DΨT(Ũ))−1D1

9: until ∆‖q̃‖1 ≤ ε

10: p̃ =
(
I − DΨ(Ũ)

)−1
D1

The solution to Problem (P4), derived in [2], is given by the
K, decoupled problems

ui = arg max
u

SINRVUL(ui, q̃) = arg max
ui

u∗
i R̃iui

u∗
i Qiui

, (12)

where Qi =
∑

k �=i qkR̃i + I. If ui is unconstrained, this is a gen-
eralized eigenvalue problem and the solution is given by the gen-
eralized eigenvector associated with the largest generalized eigen-
value λmax(R̃i,Qi), such that R̃iui = λmaxQiui.

3. CONSTRAINING THE BEAMFORMERS

The results of Section 2 and the proposed algorithms in Table 1 are
unaffected by imposing the indefinite constraint U ∈ C. Problem
(P4) is however severely complicated by the imposed indefinite
non-convex constraints. The constrained version of problem (P 4)
is given by

P 4C. ui = arg maxui∈PCi

u∗
i R̃iui

u∗
i Qiui

,

where PCi � {u|u∗Ciu ≥ 0}. This optimization problem is
analyzed in Section 4 where an efficient algorithmic solution, is
derived. Hence by solving the constrained problem (P4C) in place
of the unconstrained, the algorithms in Table 1 will converge to the
globally optimal U ∈ C.

4. SOLVING THE CONSTRAINED PROBLEM

In this section an efficient algorithmic solution to Problem (P4C) is
derived. It is shown that the optimal solution can be obtained from
the, readily solvable, dual problem. For notational convenience,
all indices are dropped and the problem under study is

P 5. maxu∈PC
u∗Ru
u∗Qu

, where Q � 0.

Here, Q � 0, denotes a positive definite matrix Q.

4.1. The dual problem

By noting that the criterion function is independent of the normal-
ization of u and that Q � 0, the constraint u ∈ P can be replaced
by u∗Cu

u∗Qu
≥ 0, which, see [5], results in the dual problem

P 6. minν≥0 maxu

[
u∗(R+νC)u

u∗Qu

]
.

For a given ν, the maximization over u is a generalized eigen-
value problem. The maximum is given by the largest generalized
eigenvalue, λmax(R + νC,Q) and the maximum is attained for
the associated generalized eigenvector uopt. The dual problem can
therefore equivalently be written as

min
ν≥0

λmax(R + νC,Q).

4.2. Relation between the primal and dual problem

Below, the relation between the dual and primal problem is dis-
cussed. Any dual problem provides an upper bound on the associ-
ated primal problem, by week duality [5]. The main result of this
section is Theorem 2, which states that the dual Problem (P6) and
the primal Problem (P5) do in fact attain the same optimal value.

Theorem 2. The primal Problem (P5) and the dual Problem (P6)
have the same optimal value.

Proof. The strong duality is proven by showing that there is an
optimal point (νopt,uopt) of the dual problem satisfying

νoptu
∗
optCuopt = 0 (13)

u∗
optCuopt ≥ 0 (14)

which proves that uopt is in the feasible set of the primal problem
and that the primal and dual criterion functions attain the same
value at this point.

Case 1: νopt = 0
This implies that there exists a uopt in the eigenspace asso-
ciated with λmax such that u∗

optCuopt ≥ 0, since otherwise
λmax(R + νoptC,Q) could be decreased by increasing ν.
(νopt,uopt) thereby satisfies conditions (13) and (14).

Case 2: νopt > 0
By the same argument as in case 1, there exist a up in the
eigenspace associated with λmax, such that u∗

pCup ≥ 0.
Similarly there must exist a un in the eigenspace of λmax,

such that u∗
nCun ≤ 0, since otherwise λmax(R+νoptC,Q) could

be decreased by decreasing ν.
Let u(α) = αup + (1 − α)un and note that u(α) also is

an eigenvector associated with λmax. Define the real continu-
ous function f(α) = u(α)∗Cu(α). It holds that f(0) ≤ 0 ≤
f(1) and thus there exist an α0 ∈ [0, 1] such that f(α0) =
u(α0)

∗Cu(α0) = 0. It follows that uopt = u(α0) satisfies con-
ditions (13) and (14).

The next corollary is an immediate consequence of Theorem 2
and the proof thereof, and is the key to solving Problem (P5).

Corollary 3. Any optimal point uopt of Problem (P5) is in the gen-
eralized eigenspace associated with λmax(R + νoptC,Q), where
νopt is the optimal point of the convex problem

νopt = arg min
ν≥0

λmax(R + νC,Q).

Conversely, any normalized u in the generalized eigenspace of
λmax(R + νoptC,Q), satisfying condition (13) and (14) is an op-
timal solution of Problem (P5). Furthermore, there exists at least
one such point.

IV - 907

➡ ➡



4.3. Solving the dual problem

The dual problem is always convex, see [5], in the dual variable,
ν. It can therefore readily be solved using virtually any standard
method for one dimensional line searches. However, the criterion
function has several nice properties that allow for an efficient line
search. For example, it can be shown that the derivative in each
point is given by

∂

∂ν
λmax(R + νC,Q) =

u∗Cu

u∗Qu
, (15)

where u is the eigenvector associated with the maximum eigen-
value. An efficient implementation converges in typically less than
ten iterations, see Section 5.

4.4. Solving the primal problem

In Section 4.3 an efficient algorithm to find the optimal νopt of the
dual Problem (P6) is presented. The optimal uopt of the primal
Problem (P5) is thus, according to Corollary 3, confined to the
eigenspace associated with λopt = λmax(R + νoptC,Q). The
eigenspace associated with λopt is typically of dimension one and
any vector in the eigenspace is thus optimal and can be chosen as
uopt.

A higher dimensionality eigenspace corresponds to perfect
alignment of some of the generalized eigenvectors of R and C.
An optimal uopt can then be obtained in several ways. The most
straightforward way is to remove the symmetry by adding small
random permutations to the matrices, which yield an eigenspace
of dimension one.

A more brute force approach is to find a uopt in the eigenspace
of λopt that satisfies condition (13) and (14) which, according to
Corollary 3, solves the primal problem. Such a uopt can be com-
puted using a similar approach as in the proof of Theorem 2.

5. COMPUTATIONAL COMPLEXITY

The complexity of the proposed algorithm for constrained beam-
formers, is closely related to the algorithm for arbitrary beamform-
ers of [2], which is described in Section 2.

A well implemented line-search of the constrained Problem
(P4C) converges in typically less than 10 iterations, if the con-
straint is active, and on the first iteration for inactive constraints.
Each iteration involves a generalized eigenvalue problem. The
complexity is thus between a factor one and 10 of that of the un-
constrained version.

In Figure 1, the processing time of the proposed algorithm is
illustrated and compared to other algorithms. Random scenarios
were generated and the indefinite constraints were designed to be
active with probability 50%.

It can be observed from the figure that the processing time of
the proposed algorithm is increased by a factor 5 compared to the
unconstrained algorithm. The processing time of the algorithm
based on the semidefinite approach is approximately a factor 5
higher than the proposed algorithm, for these problem sizes.

6. CONCLUSIONS

In this work an efficient algorithm solving a constrained downlink
beamforming problem has been proposed. The algorithm is based
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Fig. 1. The normalized average processing time is plotted as a
function of the number of users (top figure) and antennas (bottom
figure) for the unconstrained algorithm of [2], the algorithm pro-
posed herein and the semidefinite approach of [4], respectively.

on a simpler algorithm for the unconstrained case, which was mod-
ified to cope with beamformers limited by an indefinite constraint.

The proposed algorithm was shown to converge considerably
faster than any other known algorithm for the considered problem.
Furthermore, the implementation only involves eigenvalue prob-
lems, which are readily implemented, contrary to other techniques
which involve semidefinite programming.
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