
MOBILE TRACKING USING UKF, TIME MEASURES AND LOS-NLOS EXPERT 

KNOWLEDGE 

Jose M. Huerta, Josep Vidal 

Dep. of Signal Theory and Communications, Universitat Politècnica de Catalunya (UPC) 

Jordi Girona, 1-3 (Campus Nord – Mòdul D5), 08034 Barcelona (SPAIN) 

email: {huerta,pepe}@gps.tsc.upc.edu 

ABSTRACT

The main difficulty for the location of terminals in wireless 

communications systems is the Non Line Of Sight (NLOS) 

situation caused by obstacles in the transmitted signal path, 

between the base stations and the user equipment. This NLOS 

situation biases TDOA measures, resulting in a biased final 

position. However, not all of the base stations may be in NLOS. 

Determining which base stations are in LOS can improve the 

accuracy of the system. It is feasible to estimate the reliability of 

the measures through the study of signal parameters like the 

delay spread, received power or previous position estimates. The 

objective of this paper is to analyze the improvements in 

positioning accuracy by tracking the terminal with an unscented 

Kalman filter (UKF) incorporating knowledge of NLOS-LOS 

situation. The evaluation of the approach has been carried out 

with measures taken in real scenarios.1

1. INTRODUCTION 

The objective is to estimate the position of the mobile using the 

pilot signals sent by several base stations. We assume that all 

base stations transmit the pilot signal synchronously, or that they 

are non-synchronized base stations but the delay between 

transmitting times is known. The mobile is not synchronized 

with the BS, so this transmitting time is unknown by the 

terminal. Using the high resolution timing estimator presented in 

[1][2], the relative time of arrival (RTOA) can be estimated 

combating the multipath problem, but not the NLOS. The 

simplification of this problem to TDOA measures, subtracting 

two RTOA measurements, has been widely studied [3][4][5]. 

Normally the observation errors of different TDOA 

measurements sharing the same BS are assumed independent, 

but they aren’t. In this paper we consider another point of view. 

We estimate, jointly with the position, the transmitting time, so 

all RTOA measurements can be considered as TOA estimates, 

thus avoiding the TDOA problem because each TOA estimate is 

truly independent from others.  

The position and transmitting time are tracked using an 

unscented Kalman filter (UKF) [6]. This linearization method 

has a complexity of the order of the extended Kalman filter 

(EKF), but is more suitable for non-linear systems. The most 

1 This work has been carried out in the framework of the EC-funded 

project SATURN and supported by Catalan and Spanish Government: 

2001SGR-00268, TIC2003-05482, TIC2002-04594-C02, TIC2001-2356, 

TEC-2004-04526 and jointly financed by FEDER. 

important innovation of this document is the addition of expert 

knowledge of LOS-NLOS to the UKF. Alternative approaches 

are based on Monte Carlo methods (particle filters), which can 

provide a better solution, at the cost of a much higher 

computational effort [7][8]. 

2. MODEL 

The model is composed by the state and observation equations. 

The only restriction for using the UKF is that all the random 

variables must be Gaussian (GRV) [6]. The linearity of the state 

and observation equations doesn’t matter. 

2.1. State Equation 

The state vector is composed of: 

0( ) ( ) ( ) ( ) ( )
T

k x y rp k p k v k v k ks  (1) 

where xp  and yp  are the coordinates of the mobile position; rv

and v  are the radial and angular velocity respectively; and 0

is the pilot signal transmitting time. 

The state equations are: 
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where rn , n  and n  are GRV. All these state equations are 

summarized in: 

1 , , ,k s k rn n ns f s  (3) 

where (·)sf  is a non-linear function. 

2.2. Observation Equation 

The observation vector is composed of the RTOA measurements 

for each base station: 

1( ) ( )
T

k Ny k y ky  (4) 

The equation for each measurement is: 
22

0( ) ( ) ( ) ( ) ( )i i i x i yy k F m k k X p k Y p k  (5) 

where iy  is the measured RTOA in equivalent meters; iX  and 

iY  are the base station coordinates; im  is a GRV (mean 0, 

variance 1) that determines the observation error; and (·)F  is  a 
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function that accommodates the pdf of the noise to the LOS-

NLOS situation and the timing estimator used. The result 

( )iF m k  is in fact a non-gaussian random variable, but the use 

of this function is needed because the UKF assumes the 

gaussianity of the input variables [6]. 

The set of all observation equations can be summarized in: 

0 1, , ,k k Nm my f s  (6) 

where 0 (·)f  is a non-linear function. 
The complete noise vector is:

1( ) ( ) ( ) ( ) ( )
T

k r Nn k n k n k m k m kn  (7) 

2.3. The F function 

The (·)F  function varies depending if the base station is in LOS 

or NLOS and the RTOA estimator used. For the timing estimator 

used [1] we determined empirically (from real data) the pdf’s 

corresponding to these two cases. More important than the 

function itself is the PDF of ( )iF m k  where ( )im k  is a GRV 

(mean 0, variance 1).  
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Figure 1. Representation of the F function pdf for the NLOS and 

LOS cases. 

For the LOS case, the pdf selected is gaussian, with mean 0, 

thus the F function is only a scalar factor. The variance depends 

on the SNR. For the NLOS case the pdf selected is Rayleigh: 

2

22

( ) 2
( )

NLOS i

s

F n

e
P

s
 (8) 

and the parameter s  depends on the propagation scenario. For 

our experiments with real data we established 42s . Figure 1 

compares the selected pdf’s and a histogram of the RTOA 

estimation error in both LOS and NLOS cases, obtained from 

real data. 

These functions are determined for our environment 

(mainly suburban) and our estimator. Other environments or 

other estimators, may have different pdf’s associated. 

3. STANDARD UKF 

We present a brief description of the UKF based on [6] for 

better understanding of the document.  

Let the general vector be: 

k

k

k

s
x

n
 (9) 

All the random variables contained in this vector are GRV. 

The objective is to obtain the prediction of the observation 

vector ky  from kx . The unscented transformation is a method 

that allows us to calculate the statistics of a random variable 

which undergoes a non-linear transformation ( )k kgy x . The 

methods consists on calculating the set of sigma points k

associated with kx ; obtain the observation sigma set from 

k kg ; and finally estimate the statistics of ky .

3.1. Form of the sigma set 

Assume kx  has mean kx  and covariance 
kxP . The associated 

sigma set k   is a matrix composed of 2 1L  column vectors 

,k i , called sigma points, according to the following: 
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where 2 L L  is a scaling parameter. determines the 

spread of the sigma points. We use 310 . This transform is 

represented as: 

,
k

UT

k kx
x P  (11) 

In the case of independent noise variables, the covariance 

of each one only affects two sigma points as stated in (10). So 

the pdf of each variable is characterized by only three sigma 

points, two from the covariance, and one from the mean. 

3.2. Obtain the statistics from a sigma set 

The previous sigma set can be passed through a non-linear 

function, obtaining a new sigma set k . The mean and 

covariance of the associated ky , are computed from the sigma 

points weighted by: 
( )

0

( ) 2

0

( , )

( )

( ) (3 )

1 2( ) , 0

m

c

m c

i

W L

W L

W L i

 (12) 

So, the result is: 
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This operation is represented as: 

1

,
k

UT

k k yy P  (14) 

3.3. UKF equations (initialization) 

The previous statistics are: 

0

0 0

0 0 0 0

T
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s s
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 (15) 

Then we obtain the initial statistics as: 

0
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 (16) 

It is possible to compute the sigma set associated with this 

vector. 

3.4. UKF equations (loop) 

For each iteration we compute the sigma set as: 

1 1 1, UT

k k kx P  (17) 

The sigma set can be expressed as: 

1

1

1

k

k

k

s

n
 (18) 

separating the parts of the state vector and the noise vector. 

Now the Kalman filter must be computed over the sigma 

set. First, predict the next state from the previous state: 

1

| 1

| 1 1

| 1 | 1,
k k

k k s k

UT

k k k k

s

s

s

f

s P
 (19) 

Second, predict the observation from the state: 
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Third, compute the Kalman gain matrix: 

| 1

| 1 | 1
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Finally, estimate the statistics of the state, and the general 

vectors: 
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3.5. Observation function 

The (·)F  function, contained in 0 (·)f  (5), must be defined. This 

function depends on the LOS-NLOS situation. There are two 

easy solutions: 

1. Predict the LOS-NLOS situation in absolute terms, 

and apply the corresponding function. 

2. Predict the percentage of LOS-NLOS probability 

and combine the two functions according to this 

percentage.

The first solution is very easy to implement. However it is 

not normally easy to determine the LOS or NLOS situation. The 

second solution is not as easy to implement, but is much more 

accurate. The problem is that the (·)F  function becomes too 

complex to be characterized with only three sigma points (10), 

because it only depends on one random variable: ( )im k , as 

stated in (5). 

4. IMPROVED UKF 

To avoid the (·)F  characterization problem, we propose to 

create a pseudo-sigma set with twice the number of sigma 

points, providing a better resolution. 

Separate the 0 (·)f  function (6) into its components: 

( )

| 1 | 1 1( , )
i

i

k k o k k kf s n  (23) 

where ( )

\ 1

i

k k  is the i  row vector of | 1k k .

Let’s consider ( ) (·)
i

LOS

of  the function associated with the 

LOS case, and ( ) (·)
i

NLOS

of  the NLOS one. Let’s form a double 

sized sigma set like: 
( )( ) ( ) ( )

| 1 , | 1 | 1

( )( ) ( ) ( )

| 1 , | 1 | 1

( ) ( )( ) ( )( )

| 1 | 1 | 1

( , )

( , )

i

i

LOS i LOS LOS

k k i k o k k k k
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k k i k o k k k k

i LOS i NLOS i

k k k k k k

W f

W f

s n

s n  (24) 

where ( )

( )

LOS

iW  is the probability of LOS for the i  base station. 

The new sigma set | 1k k  is not strictly a sigma set, in the sense 

that its rows are previously weighted and it has twice the sigma 

points. In order to perform the inverse unscented transform for 

this particular pseudo-sigma set, the weights from 0 to 2L are the 

same as in (12), and from 2 1L  to 4 2L  are: 
( , ) ( , )

2 1

c m c m

i i LW W  (25) 

From (13), the result of the inverse unscented transform is: 
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4 2
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4 2
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The result is to obtain six sigma points to determine the 

(·)F  function, three associated with the LOS case and three 

associated with the NLOS case, providing a better 

characterization of the (·)F  function. 
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Figure 2. Base Stations distribution. 

5. EVALUATION IN REAL SCENARIO 

To finally evaluate the presented approach, it was tested in a real 

UMTS scenario. The measurement equipment is composed of 

transmitters and receiver working at the 1.8 GHz band, 

bandwidth of 5 MHz. A GPS is used in the mobile to provide an 

offline comparison measure. 

The transmitted signal is a constant power pilot signal, 

composed of 256 chips shaped with a root-raised cosine. The 

number of channels estimates is around 800 per second 

(determined by the test-bed DSP capacity). 

The received SINR can be determined as: 

( ) ( ) ( ) ( )pilot otherSINR dB S dBm dB S dBm  (27) 

where pilotS  is the received pilot signal power,  a processing 

gain factor and otherS  the intracell and intercell total interfering 

power. The  gain factor depends on the number of slots used 

for the channel estimation [9]: 

Slots used 4 2 1 ½ ¼

( )dB 35 32 29 26 23 

Extra noise is added in order to emulate the effect of 

interfering signals ( otherS ). 

Figure 2 shows the base station distribution and the mobile 

path for our experiments with real data. The BS’s marked with 

NLOS are in this situation for more than 80 % of the time. 

Figure 3 compares the proposed approach, a basic UKF and 

a EKF. The four considered cases are: 

1. The improved UKF approach with LOS-NLOS 

expert knowledge. 

2. The basic UKF with expert LOS-NLOS knowledge.  

3. A basic EKF solution where its noise variances are 

determined from the LOS-NLOS expert knowledge. 

This EKF implementation is explained in [3]. 

4. A static MSE estimator solution without tracking. 

 Due to the non-linear nature of the state and measurement 

equations, the EKF may diverge. To obtain the RMSE of Figure 

3 the diverging solutions have been discarded, because of their 

aberrant nature. It’s important to point that the EKF diverges on 

30 % of the experiments in front of a never diverging UKF.  

The RMSE and standard deviance have been computed as: 

2

2

2

2

RMSE E

E RMSE

 (28) 
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Figure 3: Comparison between different tracking algorithms. 

6. CONCLUSIONS 

In this paper a mobile location system with LOS-NLOS expert 

knowledge has been proposed and evaluated in real UMTS 

scenarios. RTOA measures are estimated from the pilot channel 

using a high resolution timing method. A novel UKF has been 

presented to track the source and benefit from the expert 

knowledge of LOS-NLOS situation. The method has a better 

behavior than EKF or UKF tracking, demonstrating a non-

divergent and more accurate solution with the same 

computational cost. 
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