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ABSTRACT

The exact probabilities of error in the case of multimedia multi-

cast transmission in multiple-input multiple-output (MIMO) mo-

bile wireless networks using orthogonal space-time block codes

(OSTBC) are analyzed. The cases of nonuniform 4-PSK and 8-

PSK constellations are considered. Comparisons of the derived

expressions with numerical probabilities of error demonstrate the

validity of our analysis.

1. INTRODUCTION

In wireless communication networks, it is often necessary for a

user to broadcast or multicast messages. The broadcast transmis-

sion is a transmission intended for all the users in the network. The

multicast transmission is a transmission intended for more than

one user but not necessarily for all the users. We categorize the re-

ceivers in multicast transmission systems into two groups based on

their received SNR. Let us refer to the receivers with a lower SNR

as less-capable receivers, and to the receivers with a higher SNR

as more-capable receivers. It is desirable to design the network

such that it provides some basic information to the less-capable re-

ceivers while providing additional information to the more-capable

receivers. The approach in [1] achieves this goal for single-input

single-output (SISO) systems by the use of nonuniform M -PSK.

This is done by expanding a uniform constant envelope signal

constellation with N points into a larger nonuniform constant-

envelope signal constellation with M points. The enlarged con-

stellation can allocate log2(N) bits per symbol for conveying the

basic message and log2(M/N) bits per symbol for conveying the

additional message. The advantages of using M -PSK rather than

QAM for multicast transmission were briefly discussed in [1].

In [1], the case of M = 2N is discussed in detail, where a

nonuniform M -PSK constellation is derived from a uniform N -

PSK constellation by splitting each point into two half-points. The

two half-points are split away from the position of the original

point by equal amount around the circle defined by the original

uniform N -PSK constellation. Figure 1 illustrates the construc-

tion of a nonuniform 4-PSK constellation from a uniform BPSK

constellation. The two half-points are located at the angles θ and

−θ relative to the angular position of the original point. Hence,

the constructed nonuniform 4-PSK constellation has its points at

the angles θ, −θ, π − θ, and π + θ where 0 < θ < π/N . The

angle θ controls the division of transmit energy between the basic

and the additional messages. Following [1], in the present paper

we assume M = 2N . Therefore, each point in the non-uniform
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Fig. 1. The construction of a nonuniform 4-PSK constellation

form a uniform BPSK constellation. (a) Original uniform BPSK

constellation. (b) Final nonuniform 4-PSK constellation.

constellation conveys one bit of additional information, in addition

to the log(N) bits of basic information.

In [1], the SISO case was studied. However, the use of MIMO

technology (along with appropriate coding over the space and time)

has been shown to be a very promising approach both to increase

the communication system throughput and to counteract fading.

In particular, OSTBCs [2] are very popular due to their high per-

formance and low decoding complexity. Certain space-time codes

have also been proposed for broadcast communications in [3].

Recently, many attempts to analyze the error probability of

OSTBCs have been made for the coherent receiver where the chan-

nel state information is known at the decoder. An approximate

expression was obtained for the probability of error in the BPSK

constellation case [4]. In [5], an upper bound on the pairwise sym-

bol error probability of OSTBCs was found. In [6], an approximate

expression was derived for the bit error rate (BER) of OSTBCs that

use the uniform M -PSK modulation. Exact BER formulae were

obtained in [7] for the Alamouti code in the uniform M -PSK case.

In [8], exact expressions for the symbol error probability were de-

rived for OSTBCs whose input signal constellations are uniform

M -PSK or M -QAM. In [9], exact symbol error probabilities were

obtained for OSTBCs with arbitrary input signal constellations.

In the present paper, we extend the SISO nonuniform M -PSK

coding of [1] to MIMO systems using OSTBCs. It has been shown

in [10] that in OSTBCs, the signal constellation at the receiver is

merely a scaled version of the original constellation at the transmit-

ter. This scaling factor has been shown to be equal to ‖H‖F where

H is the channel matrix. This interesting property means that rel-
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ative angles between any distinct points of the transmitted signal

constellation are preserved at the receiver, while relative distances

are scaled with the same factor ‖H‖F . This property is called the

constellation space invariance of OSTBCs.

In this paper, we use this property to obtain the exact error

probabilities for MIMO multicast transmission systems using OS-

TBCs with nonuniform M -PSK signals.

2. EXACT ERROR PROBABILITY ANALYSIS FOR 4-PSK
SIGNALS IN RAYLEIGH FADING CHANNELS

In this section, we derive exact expressions for the error probabil-

ities for multicast 4-PSK signals, which are encoded using OST-

BCs and transmitted over a Rayleigh channel with additive white

Gaussian noise (AWGN) with zero mean and a variance σ2 = N0

per complex dimension.

Suppose that such 4-PSK signals are employed to send infor-

mation from a single transmitter to multiple receivers. We will

consider some of the receivers as less-capable receivers (which are

intended to successfully demodulate the basic message only) and

the others as more-capable receivers (which are intended to suc-

cessfully demodulate the basic message and the additional mes-

sage as well).

In SISO systems with an AWGN channel, if we denote the re-

ceived symbol energy at the ith receiver by Ei and use the notation

ei �
√Ei/N0, then the probabilities of bit error at the ith receiver

for the basic and additional messages can be written as [1]

Pe(i, b) = Q[
√

2ei cos θ]

Pe(i, a) = Q[
√

2ei sin θ]

respectively, where Q(x) � 1√
2π

∫ ∞
x

e−t2/2dt.

Let nt be the number of transmit antennas, nri be the number

of antennas at the ith receiver, and T be the block length (assuming

block fading). The MIMO multicast system is described by

Yi = XHi + Ni (1)

where X is the T×nt transmitted multicast complex signal matrix,

Hi is the nt × nri channel matrix for the ith receiver, Yi is the

T × nri received signal matrix at the ith receiver, and Ni is the

T × nri matrix of the noise at the ith receiver.

Using the results of [9,10], we can compute the probability of

bit error (for both the basic and the additional messages) in MIMO

systems with known channel coefficients at the ith receiver. For

that purpose, we use the idea of [9] and compute the probability of

error by using the above SISO expressions and divide the standard

deviation of the noise by the aforementioned scaling factor ‖H‖F

as in [9]. If we use the notation Zi � ‖Hi‖2
F , then the probabil-

ities of error in detecting the basic and the additional messages at

the ith receiver are

Pe(i, b|Zi = z) = Q[
√

2z e cos θ] (2)

Pe(i, a|Zi = z) = Q[
√

2z e sin θ] (3)

respectively, where e �
√

E
N0

, and E is the energy of the trans-

mitted multicast signal.

To obtain the average error probability for the basic message

over all Rayleigh channel realizations, we can write

Pe(i, b) =

∫ ∞

0

Pe(i, b|Zi = z) pZi(z) dz. (4)

In Rayleigh channels, Zi has a (central) χ2 distribution with ri =
2 nt nri degrees of freedom. Hence, the probability density func-

tion (pdf) of Zi is

pZi(z) =
z

ri
2 −1 e

− z
2ρ2

i

ρri
i Γ( ri

2
) 2

ri
2

(5)

where ρi is the standard deviation of each real and imaginary ele-

ment of Hi. Moreover, ρi represents the strength of the channel at

the specified receiver (e.g. if ρi > ρj then the channel for the ith
receiver is said to be stronger than the channel for the jth receiver,

or, in other words, the ith receiver is more-capable while the jth

receiver is the less-capable). Substituting (2) and (5) into (4) gives

Pe(i, b) =

∫ ∞

0

Q[
√

2z e cos θ]
z

ri
2 −1 e

− z
2ρ2

i

ρri
i Γ( ri

2
) 2

ri
2

dz

=

∫ ∞

0

( ∫ ∞

√
2z e cos θ

1√
2π

e−
t2
2 dt

)

× z
ri
2 −1 e

− z
2ρ2

i

ρri
i Γ( ri

2
) 2

ri
2

dz

=
1√

2π ρri
i Γ( ri

2
) 2

ri
2

×
∫ ∞

z=0

∫ ∞

t=
√

2z e cos θ

e−
t2
2 z

ri
2 −1 e

− z
2ρ2

i dt dz

=
1√

2π ρri
i Γ( ri

2
) 2

ri
2

×
∫ ∞

t=0

( ∫ t2

2 e2 cos2 θ

z=0

z
ri
2 −1 e

− z
2ρ2

i dz

)
e−

t2
2 dt.(6)

After integration, we have [11]

Pe(i, b) =
1

2
−

√
2e2

π
ρi

Γ( ri+1
2

)

Γ( ri
2

)
cos θ

× 2F1(
1

2
,
ri + 1

2
;
3

2
;−2 e2 ρ2

i cos2 θ) (7)

where 2F1(a, b; c; z) is the Gauss hypergeometric function.

The average probability of error for the additional message

over all Rayleigh channel realizations can be obtained by replacing

cos θ in (7) with sin θ

Pe(i, a) =
1

2
−

√
2e2

π
ρi

Γ( ri+1
2

)

Γ( ri
2

)
sin θ

× 2F1(
1

2
,
ri + 1

2
;
3

2
;−2 e2 ρ2

i sin2 θ). (8)

3. EXACT ERROR PROBABILITY ANALYSIS FOR 8-PSK
SIGNALS IN RAYLEIGH FADING CHANNELS

In this section, we derive exact expressions for the error probabili-

ties for multicast 8-PSK signals (assuming that one bit is allocated

for the additional message) following the same steps as in Section

2. It can be easily shown that in an AWGN SISO channel, the

probability of bit error for the basic message at the ith receiver is

Pe(i, b) =
1

2
[Q(

√
2 ei sin(

π

4
− θ)) + Q(

√
2 ei sin(

π

4
+ θ))]
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and for the additional message is

Pe(i, a) =
1

2
− 2√

π

∫ ei sin θ

0

e−y2
[
1

2
− Q(

√
2y cot θ)] dy

− 2√
π

∫ ei cos θ

0

e−y2
[
1

2
− Q(

√
2y tan θ)] dy.

Using the results of [9, 10] and letting Zi = ‖Hi‖2
F , the probabil-

ities of error for the basic and the additional messages in the case

of a known channel at the ith receiver are given by

Pe(i, b|Zi = z) =
1

2

[
Q(

√
2z e sin(

π

4
− θ))

+Q(
√

2z e sin(
π

4
+ θ))

]
(9)

and

Pe(i, a|Zi = z) =
1

2

− 2√
π

∫ √
z e sin θ

0

e−y2
[
1

2
− Q(

√
2y cot θ)] dy

− 2√
π

∫ √
z e cos θ

0

e−y2
[
1

2
− Q(

√
2y tan θ)] dy (10)

respectively.

The average error probability for the basic message using non-

uniform 8-PSK can be obtained by substituting (5) and (9) into (4)

Pe(i, b) =
1

2

∫ ∞

0

[
Q(

√
2z e sin(

π

4
− θ))

+Q(
√

2z e sin(
π

4
+ θ))

]
z

ri
2 −1 e

− z
2ρ2

i

ρri
i Γ( ri

2
) 2

ri
2

dz.

Following the same steps that have been used to derive (6), we

obtain

Pe(i, b) =
1

2
−

√
e2

2π
ρi

Γ( ri+1
2

)

Γ( ri
2

)

×
[
sin(

π

4
+ θ) 2F1

(
1

2
,
ri + 1

2
;
3

2
;−2 e2 ρ2

i sin2(
π

4
+ θ)

)

+sin(
π

4
− θ) 2F1

(
1

2
,
ri + 1

2
;
3

2
;−2 e2 ρ2

i sin2(
π

4
− θ)

)]
.

The average error probability for the additional message using

nonuniform 8-PSK may be obtained by substituting (5) and (10)

into

Pe(i, a) =

∫ ∞

0

Pe(i, a|Zi = z) pZi(z) dz (11)

to get

Pe(i, a) =
1

2
− 2√

πρri
i Γ( ri

2
) 2

ri
2

×
∫ ∞

0

[ ∫ √
z e sin θ

0

e−y2
[
1

2
− Q(

√
2y cot θ)] dy

+

∫ √
z e cos θ

0

e−y2
[
1

2
− Q(

√
2y tan θ)] dy

]
z

ri
2 −1 e

− z
2ρ2

i dz

=
1

2
−

√
2

π
e ρi

Γ( ri+1
2

)

Γ( ri
2

)
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Fig. 2. Theoretical and simulated BERs versus SNR in the case of

nonuniform 4-PSK signals.

×
[

sin θ 2F1

(
1

2
,
ri + 1

2
;
3

2
;−2 e2 ρ2

i sin2 θ

)

+cos θ 2F1

(
1

2
,
ri + 1

2
;
3

2
;−2 e2 ρ2

i cos2 θ

)]

+
2√

πρri
i Γ( ri

2
) 2

ri
2

∫ ∞

0

[ ∫ √
z e sin θ

0

e−y2
[Q(

√
2y cot θ)] dy

+

∫ √
z e cos θ

0

e−y2
[Q(

√
2y tan θ)] dy

]
z

ri
2 −1

i e
− zi

2ρ2
i dz. (12)

The integral in (12) has no closed form but can be evaluated nu-

merically.

4. SIMULATION RESULTS

Figure 2 compares the bit error rates (BERs) versus the SNR.

These BERs are obtained via simulations and by theoretical eval-

uation using (7) and (8). It is assumed that we have two transmit

antennas and one antenna at each of the receivers. The splitting

angle θ is π
6

. The simulation points are obtained for the scenario

equivalent to that considered in theory, i.e., for the case of 4-PSK

signals encoded using Alamouti’s code [12] and decoded using co-

herent maximum likelihood (ML) decoder. This figure shows that

the obtained theoretical and simulation results match perfectly.

In Figure 3, we plot the theoretically evaluated BERs of de-

coding the additional and basic messages for nonuniform 4-PSK

and the theoretical BER for the original uniform BPSK versus the

received SNR. We can notice some degradation in the performance

of the multicast system in decoding the basic message compared

to the BPSK-based broadcast system. This degradation is quite ex-

pected because of the distance change between constellation points

in the nonuniform 4-PSK case relative to the BPSK case. It can be

viewed as a price for sending additional messages in the multicast

case.

The error probabilities of decoding the additional and basic

messages in the nonuniform 8-PSK and uniform 4-PSK cases are

shown in Figure 4. Similar to the previous message, we observe

that, as expected, there is some degradation in the performance

of the multicast system compared to the 4-PSK-based broadcast

system.

In Figure 5, the error probabilities of decoding the additional
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Fig. 3. Theoretical BERs versus SNR. The BPSK-based broad-

cast system is compared to the nonuniform 4-PSK-based multicast

system.
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Fig. 4. Theoretical BERs versus SNR. The uniform 4-PSK-based

broadcast system is compared to the nonuniform 8-PSK-based

multicast system.

and basic messages are plotted in the case of nonuniform 4-PSK

with different number of antennas. This figure shows that, increas-

ing the number of antennas from one to three, the probability of

error can be improved greatly.

5. CONCLUSIONS

In this paper, we have analyzed the performance of the multicast

transmission scheme using space-time block coded MIMO sys-

tems. The orthogonal space-time codes used can be easily gen-

erated and generalized to higher constellation size cases. Exact

expressions for the probability of error in the cases of nonuniform

4-PSK and 8-PSK constellations have been derived.
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