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ABSTRACT

For the development of future wireless systems, it is crucial to cre-
ate accurate channel models. Channel sounding using antenna ar-
rays and consequently propagation parameter estimation are key
tasks in creating such models. In this paper we present an esti-
mator for the angular distribution of the diffuse scattering com-
ponent that is observed in channel sounding measurements. The
angular distribution is modeled as a mixture of Von Mises distri-
butions, which correspond to scatterer clusters. The parameters of
the individual distributions as well as the mixture proportions are
estimated. The large sample performance of the estimator is stud-
ied by deriving the Cramér-Rao lower bound and comparing the
variance of the estimates to it. The simulations show that the the
proposed estimator has asymptotically optimal performance since
it attains the Cramér-Rao lower bound for relatively small sample
sizes.

1. INTRODUCTION

In radio propagation it is usual to classify the signals that reach the
receiver as been originated by specular reflections or scattering.
The specular components usually carry most of the power, and
are modeled by a relatively large number of deterministic signals
with unknown parameters [1]. Scattering is frequently regarded as
noise and neglected. However, even though each scattered wave
arrives with low power, the overall sum of scattering components
can be significant, and even dominant, especially in non line-of-
sight (NLOS) situations. This behavior has been observed in mea-
surement campaigns such as [2].

Deterministic techniques for propagation parameter estima-
tion commonly employ models with large number of discrete
waves. This approach leads to maximization of highly non-linear
likelihood functions with many local optima, which causes conver-
gence problems [3]. The computational complexity and variance
of estimates are increased, since a large number of parameters has
to be estimated.

Typically isotropic scattering models are employed in channel
models. The channel model considered in this work is also suitable
for non-isotropic scattering model and nonuniform distribution of
angles of arrival. The model stems from the MIMO channel cor-
relation model presented in [4]. The MIMO channel matrix may
be described analytically as a function of the parameters of the
underlying random processes.
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In this paper we derive estimators for the channel propagation
parameters employing angular distribution models, in particular
the Von Mises distributions (see, [5]). Also other angular distri-
bution models could be used. The parameters of the diffuse scat-
tering component in MIMO systems are of interest. The proposed
method extends the method presented in [6, 7] to demanding scat-
tering environments where there may be multiple clusters of scat-
terers present. Typical example of such environment is the bad
urban scenario in mobile wireless communications. A mixture of
Von Mises distributions is employed in order to estimate the propa-
gation parameters in scattering environment with multiple clusters
of scatterers with high fidelity.

The large sample properties of the proposed estimation method
are established. We derive the Cramér-Rao Lower Bound (CRLB)
for the mixture model considered in this article. This is an exten-
sion of the result in [7] to multiple clusters. The variance of the ob-
tained estimates is compared to the CRLB. The proposed estimator
has desirable optimality properties since it attains the CRLB with
relatively small sample sizes. Moreover, it is numerically more sta-
ble than the methods using deterministic models with large num-
ber of unknown parameters, e.g. [3]. The proposed method may
be used to develop and validate realistic channel models for mul-
tiantenna communications as well as estimate parameters in other
sensor array applications.

This paper is organized as follows: in Section 2 we describe
the signal model used in this article. In Section 3 the technique for
parameter estimation is described. In Section 4 the Cramér-Rao
lower bound is established. Finally, in Section 5 we present some
simulation results and compare the large sample performance of
the estimation technique to the CRLB.

2. SIGNAL MODEL

The transmitter is assumed to be elevated and therefore not ob-
structed by local scatterers, while the receiver is surrounded by a
large number of local scatterers. No line-of-sight is assumed be-
tween the transmitter and the receiver. We consider that the waves
are planar (far-field) and the “one-ring” scatterer model is used, as
in [4] to study the effect of fading correlation on the capacity of
MIMO fading channels.

Let us define the output of the each antenna at the receiver by
the N × 1 vector y(k), the transmitted sequences by the M × 1
vector u(k), the N × M MIMO channel matrix H(k), and the
N × 1 vector n(k) with random noise. The signals defined above
are discrete-time versions of continuous-time signals sampled at
time instants kTs, where Ts is the sampling period. Using these
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definitions we model the received signal as

y(k) = H(k)u(k) + n(k). (1)

In this model it is assumed that the signal bandwidth is suffi-
ciently narrow so that the channel can be considered frequency
non-selective.

The channel sounding technique assumed in this work is based
on time division multiplexing of each transmitter and receiver an-
tenna, like in PropSound channel sounder [1, 8]. This particular
structure makes it is possible to separate the contribution from each
transmitter and receiver antenna.

The channel matrix thus defined represents the combination
of all waves that impinge the receiver array after being reflected
by the surrounding scatterers. Deterministic estimation techniques
such as SAGE [1, 8] represents the received signal as a combina-
tion of several discrete waves. Consequently parameters from a
large number of waves must be estimated. Hence, the algorithms
often have convergence problems due to local minima in likelihood
function.

In [4] the authors present a MIMO channel model whose cor-
relation matrix can be described analytically, and thus can be used
to derive estimators for the channel parameters. In this model
the signals are considered as realizations of an underlying ran-
dom process and not as deterministic signals. The authors derived
a closed form solution for the cross-correlation between any two
sub-channels assuming that the incident angles follow a Von Mises
distribution [5], but other distributions can also be used.

3. PROPAGATION PARAMETER ESTIMATION

The following assumptions will be employed throughout this arti-
cle:

(a) switched multiple element transmit antenna;

(b) the received signal y(k) is a zero-mean circular complex
Gaussian process;

(c) channel is stationary during one measurement cycle;

(d) the additive noise n(k) is a zero-mean circular complex
Gaussian process independent of H(k).

(e) the variances, E[|hl|2], for each MIMO subchannel hl are
equal and assumed to be known. We denote this variance
by Ω and call it the path-loss.

From assumption (a), if one transmit antenna is considered at the
time, the channel matrix H(k) in (1) is a N × 1 vector denoted
by lowercase h(k). From assumption (b), the pdf of the received
signal y(k) is completely characterized by its covariance matrix

Cy = E[y(k)yH(k)].

From (1) we can write Cy as

Cy = E[hhH ]Pu + Cn, (2)

where Cn is the noise covariance matrix, and Pu = |u(k)|2.
Using the channel model in [4] we can write E[hhH ] as a

function of the channel parameters. It is assumed that the receiver
is surrounded by a large number of local scatterers, and that the
waves reflected by different scatterers arrive at the array with the
same power. This situation can be represented as a ring of scatter-
ers around the receiver, as depicted in Figure 1 for any 2 antennas
at the transmitter and receiver.
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Fig. 1. Illustration of the geometrical configuration of a 2x2 chan-
nel with local scatterers at the receiver, where D is the distance
between the transmitter and receiver arrays, R is the radius of the
ring of scatterers, and dlm is the distance between elements l and
m in the receive array.

Assuming that the angle spread at the transmitter is small and
D � R � dlm, it is possible to show that the cross-correlation
between any two sub-channels l and m is given by [4]

ρlm =
1

Ω
E[hlh

∗
m] =

∫ π

−π

exp(blm cos(φ))f(φ)dφ, (3)

where f(φ) is any angular PDF of φ, blm = j2πdlm/λ, dlm is
the distance between elements l and m in the receive array, λ is
the transmitted signal wavelength, and hl is the l-th element of h.

3.1. Multiple Clusters

In channel measurements it is often found that the signal is re-
ceived as coming from a number of different clusters, specially in
bad urban scenarios. This is equivalent to a situation where the
angular pdf f(φ) in equation (3) is a mixture of distributions,

f(φ) =

P∑
p=1

εpfp(φ), (4)

where P is the number of clusters,
∑P

p=1 εp = 1, εp are unknown
mixture proportions, and fp(φ) is any valid angular pdf. A suitable
angular pdf is the Von Mises [5], defined as

f(φ) =
1

2πI0(κ)
exp(κ cos(φ − µ)), (5)

where µ is the symmetry center and κ can be chosen between 0
(isotropic scattering) and ∞ (extremely concentrated).

Using (4) and (5), the cross correlation in (3) may be written
analytically as [4, 6]

ρlm =
P∑

p=1

εp
I0({κ2

p + b2
lm + 2κpblm cos(µp)} 1

2 )

I0(κp)
. (6)

The ML estimates of θp = {κp, µp, εp}, p = 1, . . . , P ,
are those values that maximize the likelihood function. After re-
moving the constant terms not dependent on the signal, the log-
likelihood function can be written as

L{θ} ∝ − log |Cy| − tr{C−1
y Ĉy}, (7)
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where Ĉy is the sample covariance matrix, defined as Ĉy =

(1/Ns)
∑Ns−1

k=0 y(k)yH(k), and tr{·} denotes the trace. The ML
estimates are obtained as

θ̂ = argmaxθ

{
− log |Cy| − tr{C−1

y Ĉy}
}

,

s.t.
P∑

p=1

εp = 1
(8)

where θ = [θ1 · · · θP ]T . In order to optimize (8), we will use a
Sequential Quadratic Programming algorithm [9], as implemented
by the fmincon function of Matlab.

4. CRAMÉR-RAO BOUND

The Fisher information matrix can be derived for the multiple clus-
ter as an extension of the Fisher information matrix for the single
cluster case. The log-likelihood equation is given by

L{θ} = −Ns log πN − Ns log |Cy| − Nstr{C−1
y Ĉy}. (9)

We can then calculate

dL{θ} = −Nsd log |Cy| − Nstr{dC−1
y Ĉy}

= −Nstr{(I − CyĈy)C−1
y (dCy}

(10)

From (6), the elements of the derivatives of Cy(θ) with re-
spect to µp and κp, p = 1, . . . , P , are given by

{Dµp}l,m = −εpΩPuI−1
0 (κp)I1(βp)β−1

p κpblm sin µp (11)

{Dκp}l,m = εpΩPu

[−I−2
0 (κp)I1(κp)I0(βp)+

+I−1
0 (κp)I1(βp)β−1

p (κp + blm cos µp)
]

(12)

where βp = (κ2
p + b2

lm + 2κpblm cos µp)1/2, I0(·) and I1(·) are
the modified Bessel function of the first kind of order zero and
one, respectively. The condition

∑P
p=1 εp = 1 can be rewritten as

εP = 1 − ∑P−1
p=1 εp, and then we can calculate the derivatives of

Cy(θ) with respect to εp, p = 1, . . . , P − 1, as

{Dεp}l,m = ΩPu[I−1
0 (κp)I0(βp) − I−1

0 (κP )I0(βP )]. (13)

In order to simplify the notation we will write Di = Dθi ,
i = 1, . . . , 3P − 1. Hence, using equations (10)–(13), we can
write

∂L{θ}
∂θi

= −Nstr{(IN − C−1
y Ĉy)C−1

y Di} (14)

We obtain the second derivatives by differentiating (14) with
respect to θj as

∂2L{θ}
∂θi∂θj

= −Nstr{C−1
y DjC

−1
y ĈyC

−1
y Di+

+ (IN − C−1
y Ĉy)[∂(C−1

y Di)/∂θj ]},
(15)

We can then write

E

[
∂2L{θ}
∂θi∂θj

]
= −Nstr{C−1

y DjC
−1
y Di}, (16)

where it is used the fact that E[Ĉy] = Cy. The {i, j} element of
the Fisher information matrix is then given by

{I}i,j = Nstr{C−1
y DjC

−1
y Di} (17)

The Cramer-Rao bounds can then be evaluated for each pa-
rameter set as the elements in the diagonal of the inverse Fisher
information matrix.
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Fig. 2. Comparison of the obtained angular distribution to the ac-
tual distribution. Multimodal distribution is modeled with high
fidelity.

5. SIMULATION RESULTS

In this section we present some simulation results in order to com-
pare the performance of the estimator to the CRLB. In all simula-
tions the receiver has an uniform linear array (ULA) with N = 8
antennas. We will consider the angle of arrival is the outcome of
a mixture of P Von Mises distributions, P known. The received
signal is generated as

y(k) = R1/2w(k) + n(k), (18)

where R1/2 is obtained by the Cholesky decomposition of the
channel covariance matrix, i.e., E[hhH ] = R1/2(R1/2)H , and
w(k) is a circular complex white Gaussian process. The signal-
to-noise ratio (SNR) per antenna is fixed at 20dB.

The simulation parameters are chosen as µ = {60, 90},
κ = {45, 30}, and ε = {0.5, 0.5}, for P = 2 clusters. Fig-
ure 2 compares the actual angular distribution with the estimate
obtained using Ns = 1000 samples.

In Figures 3 and 4 we compare the MSE of the estimates of
each parameter to the corresponding CRLB as a function of the
number of samples. It can be seen that the MSE reaches the CRLB
for small number of samples.

6. CONCLUSION

In this paper we proposed a technique presented for estimation
of the angular distribution of the diffuse scattering component in
channel sounding applications. The method allows estimating the
propagation parameters when there are multiple clusters of scatter-
ers present in the environment as in the bad urban scenarios. The
method extends the results in [6, 7] to these more demanding sce-
narios. A mixture of angular pdfs model is used and the parameters
of each mixture component as well as the mixture proportions are
estimated. The large sample properties of the proposed estimator
are studied by establishing the CRLB and comparing the variances
of the estimates to the bound. The results show that the proposed
method possesses desirable optimality properties since the CRLB
is attained for the parameters with relatively small sample sizes.
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Fig. 3. MSE and CRLB as a function of the number of samples for
the cluster with parameters µ1 = 60◦, κ1 = 45, and ε = 0.5. The
receive array is an ULA with 8 antennas. SNR is fixed at 20 dB
per antenna. CRLB is reached with relatively small sample sizes.
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Fig. 4. MSE and CRLB as a function of the number of samples
for the cluster with parameters µ2 = 90◦ and κ2 = 30. The
receive array is an ULA with 8 antennas. SNR is fixed at 20 dB
per antenna. CRLB is attained with relatively small sample sizes.

The method is also numerically more stable than commonly used
methods based deterministic model with very large number of pa-
rameters [1] because of the lower dimensionality and smoother
likelihood function.
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