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ABSTRACT

The differential unitary space-time modulation (DUSTM)
scheme provides full diversity without channel knowledge
at either the transmitter or the receiver. However, the com-
plexity of maximum-likelihood decoding is exponential in
the number of transmit antennas and the data rate. For the
case where the number of transmit antennas is even, we
propose a new DUSTM scheme which preserves full di-
versity while reducing the decoding complexity. Moreover,
our scheme simplifies the constellation design. Theoreti-
cal analysis and simulation results show that for some typi-
cal scenarios, the proposed scheme achieves better bit-error-
rate performance than the original DUSTM scheme.

1. INTRODUCTION

Differential modulation for multiple transmit antennas has
received considerable attention as they obviate the need for
channel estimation at the receiver. A differential form of
the Alamouti’s transmit diversity scheme [1] was proposed
in [2] for two transmit antennas. Applying the space-time
block codes (STBC) designed in [3], this scheme was later
generalized in [4] to more than two antennas for real con-
stellations. More recently, a differential STBC scheme based
on amicable orthogonal designs was developed in [5].

Motivated by the information theoretical arguments in
[6], another class of differential space-time modulation tech-
niques employ unitary space-time constellations. In [7],
constellations with group property were considered and op-
timal group codes were explicitly constructed for two trans-
mit antennas. In order to simplify constellation design for
multiple antennas, Hochwald and Sweldens [8] suggested
a special class of unitary group constellations comprising
diagonal signals which were designed to maximize diver-
sity and coding gains. The resulting differential modulation
scheme is referred to as cyclic codes.

The use of cyclic codes simplifies differential encoding
process as well as the search for good codes. However, it
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suffers a loss in coding gain by imposing the special con-
stellation structure. In addition, the computational complex-
ity of maximum-likelihood (ML) decoding is exponential
in the number of transmit antennas and the data rate. Al-
though a class of non-group constellations was proposed in
[9] to achieve larger coding gain than cyclic codes, the ML
decoding complexity was not reduced.

This paper proposes a new DUSTM scheme that applies
to the case where the number of transmit antennas M is
even. Block-diagonal Alamouti-type matrices constructed
from two M/2 × M/2 unitary diagonal matrices, rather
than M ×M unitary diagonal matrices for cyclic codes, are
used to perform differential encoding. The ML decoding of
the two M/2 × M/2 diagonal matrices can be decoupled,
leading to a computationally simpler receiver. Furthermore,
our scheme simplifies constellation design by reducing the
number of parameters to be determined by half. The scheme
still provides full transmit diversity and outperforms cyclic
codes for some typical applications.

Notation: Upper (boldface lower) case letters are used
for matrices (column vectors). Superscript T denotes trans-
pose and ∗ complex conjugate transpose. We reserve ⊗, | · |
and ‖ · ‖ for the Kronecker product, the determinant and the
Frobenius norm, respectively. IM denotes the M ×M iden-
tity matrix, and diag(x) stands for a diagonal matrix with
the entries of the vector x on its main diagonal.

2. DIFFERENTIAL UNITARY SPACE-TIME
MODULATION (DUSTM)

Consider a wireless communication link with M transmit
and N receive antennas and flat fading channel. Fading
coefficients between each pair of transmit and receive an-
tennas are modeled as i.i.d. circularly symmetric complex
Gaussian random variables with zero mean and unit vari-
ance. DUSTM is employed at the transmitter. Denoting by
St the t-th M×M unitary transmitted signal matrix, the cor-
responding N ×M received signal matrix can be expressed
as

Xt =
√

ρHtSt + Wt (1)
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where Ht and Wt are the N × M matrices of channel co-
efficients and additive white Gaussian noise with zero mean
and unit variance, respectively; ρ is the average signal-to-
noise ratio (SNR) per receive antenna.

Suppose that a data sequence of integers z1, z2, . . . with
zt ∈ {0, . . . , L − 1} is to be sent, then we need a con-
stellation V = {V0, . . . , VL−1} of M × M unitary matri-
ces to build a one-to-one mapping between zt and V , say
Ψ : zt → Vzt

. To achieve a data rate of R bits/channel
use, the constellation size L will be L = 2RM . The unitary
transmitted signal matrix St is generated according to the
following differential encoding rule

St = St−1Vzt
, t = 1, 2, . . . (2)

with S0 = IM initializing the differential transmission. Un-
der the assumption that fading coefficients are constant over
T = 2M symbol periods, two successive received signal
matrices are related by

Xt = Xt−1Vzt
+ W̃t (3)

where W̃t := Wt −Wt−1Vzt is the equivalent noise matrix.
Compared to Wt, the entries of W̃t have the same statistical
property except for double variance. The ML estimate of zt

is given by

ẑt = arg min
l=0,...,L−1

‖Xt − Xt−1Vl‖. (4)

With this ML receiver, the average pairwise error probabil-
ity (PEP) of mistaking Vl for Vl′ has Chernoff upper bound

Pr(Vl → Vl′) ≤
M∏

m=1

[
1 +

ρ2σ2
m(Vl − Vl′)

4(1 + 2ρ)

]−N

(5)

where σm(Vl−Vl′) is the m-th singular value of Vl−Vl′ . If
the constellation V enables full transmit diversity, i.e., Vl −
Vl′ has full rank for any l �= l′, then for large ρ, this bound
behaves as

Pr(Vl → Vl′) ≤ (ξll′)
−MN

(ρ

8

)−MN

(6)

where ξll′ = |(Vl − Vl′)(Vl − Vl′)∗|1/M . Following the
definition in [10], the coding gain for this constellation can
be quantified as ξ = minl �=l′ ξll′ , which should be maxi-
mized in designing a constellation.

In order to simplify the constellation design, a special
class of group-structured constellation called cyclic codes
was proposed in [8] where each signal has the form

Vl = diag
(
ej2πk1l/L, . . . , ej2πkM l/L

)
, l = 0, . . . , L − 1

(7)
with the parameters k1, . . . , kM determined by

{k1, . . . , kM} = arg max
0≤k1,...,kM≤L−1

min
l=1,...,L−1

ξ0l (8)

where ξ0l = 4
∣∣∣∏M

m=1 sin(πkml/L)
∣∣∣2/M

. Although the use

of cyclic codes simplifies constellation design, the compu-
tational complexity of the ML receiver is still exponential in
both the number of transmit antennas and the data rate. We
describe in the next section a new DUSTM scheme which
reduces the receiver complexity to some extent.

3. A NEW DUSTM SCHEME

3.1. Differential Modulation

We consider the scenario in which the number of transmit
antennas M is even. The binary information to be sent can
be combined into a data sequence of integers d1, d2, . . . with
dt ∈ {0, . . . , K − 1} and K = 2RM/2. Following the ap-
proach described in Section 2 to design cyclic codes , a con-
stellation G = {G0, . . . , GK−1} of M/2 × M/2 diagonal
unitary matrices is constructed. For t = 1, 3, 5, . . ., we map
dt and dt+1 into Gdt

and Gdt+1 , respectively, and construct
the block-diagonal space-time code matrix as

C(t+1)/2 :=
1√
2

[
Gdt

Gdt+1

−G∗
dt+1

G∗
dt

]
(9)

where the factor 1√
2

is used to make the code matrix uni-
tary. Since Ck contains RM bits of information, the effec-
tive transmission rate is also R bits/channel use. We observe
that Ck looks like the Alamouti code matrix [1] with scalars
replaced by diagonal matrices, and thus, we refer to matri-
ces possessing this structure as block-Alamouti matrices.

The code matrix Ck is used to perform differential en-
coding between two successive transmitted matrices via

Sk = CkSk−1, k = 1, 2, . . . (10)

and S0 = IM initializes the differential transmission. It is
clear that Sk is unitary for any k. Each row of Sk represents
the signals simultaneously transmitted from M transmit an-
tennas at a time. Because matrix multiplication in (10) only
involves block-Alamouti matrices, the differential encoding
process has very low complexity. Note that when M = 2,
(10) reduces to the differential encoding scheme proposed
in [2].

3.2. Differential Detector

For notational simplicity, we focus on a system with a single
receive antenna, although the derivation here extends in a
straightforward way to multiple receive antennas. When Sk

is transmitted, the corresponding M × 1 received vector is
given by

xk =
√

ρSkh + wk (11)

where h and wk are the M × 1 vectors of channel coeffi-
cients and additive noise, respectively. From (10) and (11),
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we have
xk = Ckxk−1 + vk (12)

where vk := wk − Ckwk−1 is the equivalent noise vector
with zero mean and correlation matrix R(vk) = 2IM .

Define the M/2×1 vectors xk,1 and xk,2 which are de-
termined by xT

k = [xT
k,1,x

T
k,2]

T , and the diagonal matrices
Xk,i := diag(xk,i) for i = 1, 2. Similar definitions asso-
ciated with the noise vector vk are also made. Exploiting
the block-Alamouti structure of the code matrix Ck, we can
rewrite (12) as

[
Xk,1

X∗
k,2

]
︸ ︷︷ ︸

X̄k

=
1√
2

[
Xk−1,1 Xk−1,2

X∗
k−1,2 −X∗

k−1,1

]
︸ ︷︷ ︸

Xk−1

[
Gd2k−1

Gd2k

]

+
[

Vk,1

V ∗
k,2

]
︸ ︷︷ ︸

V̄k

. (13)

The block-Alamouti matrix Xk−1 specified in (13) satis-
fies X ∗

k−1Xk−1 = I2 ⊗ Λk−1, where the M/2 × M/2 di-

agonal matrix Λk−1 :=
∑2

i=1 X∗
k−1,iXk−1,i has positive

diagonal entries. It can be easily verified that Yk−1 :=(
I2 ⊗ Λ−1/2

k−1

)
X ∗

k−1 is a unitary matrix. Pre-multiplying

X̄k by Yk−1, we obtain

Zk := Yk−1X̄k

=
1√
2

(
I2 ⊗ Λ1/2

k−1

) [
Gd2k−1

Gd2k

]
+ Nk (14)

where Nk = Yk−1V̄k is the resulting noise term which has
the same statistical distribution as V̄k. Note that both Zk and
Nk consist of two M/2×M/2 diagonal matrices. Denoting
by Zk,1 (Zk,0) the top (bottom) M/2×M/2 diagonal matrix
of Zk, and analogously Nk,1 and Nk,0 based on Nk, we can
recast (14) into two separate equations

Zk,i =
1√
2
Λ1/2

k−1Gd2k−i
+ Nk,i, i = 0, 1 (15)

which show that the ML detection of Gd2k−1 and Gd2k
, or

equivalently d2k−1 and d2k, can be decoupled. Specifically,
the ML estimates of d2k−1 and d2k are given by

d̂2k−i = arg min
l=0,...,K−1

‖Zk,i − 1√
2
Λ1/2

k−1Gl‖, i = 0, 1

(16)
which amounts to a search among K = 2RM/2 possible
matrices to detect RM/2 bits of information.

Therefore, to recover RM bits of information, the ML
receiver for the proposed DUSTM scheme needs to search
among a total of 2×2RM/2 matrices, instead of 2RM matri-
ces for cyclic codes. For example, when M = 4 and R = 2,

the receiver computational complexity of our scheme re-
duces by approximately a factor of eight as compared with
that of cyclic codes. The decrease in receiver complexity
is more significant as M and/or R grow. Furthermore, it
can be seen from (8) that our scheme also simplifies con-
stellation design, not only because the constellation size is
reduced, but also because the number of parameters to be
determined drops from M to M/2.

4. PERFORMANCE ANALYSIS

In this section, we evaluate the performance of the new
DUSTM scheme by analyzing its diversity and coding gains.
The probability that the ML receiver in (16) erroneously de-
codes Gl as Gl′ conditioned on the previous received block
xk−1 has the Chernoff upper bound

Pr(Gl → Gl′ |xk−1) ≤ exp
(−d2 (Gl − Gl′)

8

)
(17)

where d2 (Gl − Gl′) = ‖ 1√
2
Λ1/2

k−1(Gl − Gl′)‖2. Assuming
high SNR at the receiver and exploiting the fact that Sk is
unitary for any k, Λk−1 can be well approximated as

Λk−1 � ρ (H∗
1H1 + H∗

2H2) (18)

where Hi = diag(hi) with hi being the M/2×1 vectors de-
termined by hT = [hT

1 ,hT
2 ]T . After some manipulations,

the expression for d2(Gl − Gl′) can be simplified as

d2(Gl − Gl′) =
ρ

2
h∗Φll′h (19)

where Φll′ = I2 ⊗ [(Gl − Gl′)∗(Gl − Gl′)]. Substituting
(19) into (17) and averaging it with respect to the statistical
distribution of the channel vector h, we obtain the average
pairwise error probability of the proposed DUSTM system

Pr(Gl → Gl′) ≤
M/2∏
m=1

[
1 +

ρ

16
σ2

m(Gl − Gl′)
]−2

(20)

where σm(Gl −Gl′) is the m-th singular value of Gl −Gl′ .
Applying the method described in Section 2 to design

the signal set G ensures that Gl − Gl′ has full rank for any
l �= l′. Therefore, the bound (20) can be rewritten as

Pr(Gl → Gl′) ≤
(

1
2
ζll′

)−M (ρ

8

)−M

(21)

where ζll′ = |(Gl −Gl′)∗(Gl −Gl′)|2/M . We deduce from
(21) that our scheme achieves the maximum transmit diver-
sity order of M , and a coding gain of

ζ :=
1
2

min
l �=l′

ζll′

=
1
2

min
l �=l′

|(Gl − Gl′)∗(Gl − Gl′)|2/M . (22)
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Fig. 1. BER performance of the cyclic codes and the pro-
posed scheme.

Remarkably, we have found that for some typical ap-
plications, our scheme has larger coding gains than cyclic
codes. Consider M=4 and R=2 as an example, the cod-
ing gain of our scheme is 0.2928 as compared to 0.1950 for
cyclic codes.

5. SIMULATION RESULTS

Simulations are performed to test the performance of the
proposed DUSTM scheme and compare it with cyclic codes.
We consider a system with four transmit antennas and a sin-
gle receive antenna. The channels are assumed to change
continuously with normalized Doppler shift fdTs = 0.0025.
We use the model introduced in [11] to generate these time-
varying channels.

Fig.1 shows the bit-error-rate performance of the pro-
posed scheme and cyclic codes for different data rates. For
R = 1.5 and 2 bits/channel use, the proposed scheme has
larger coding gains than cyclic codes. As expected, we ob-
serve significant performance improvement achieved by our
scheme in these scenorios. On the other hand, although our
scheme has a slightly smaller coding gain than cyclic codes
for R = 1, it is somewhat surprising to observe that the
former also has better performance. This may be explained
by the fact that the constellation size of our scheme is much
smaller than that of cyclic codes.

6. CONCLUSIONS

We have proposed a new differential unitary space-time mod-
ulation scheme, which simplifies constellation design and

reduces the computational complexity of the ML receiver.
The proposed scheme applies to the case where the num-
ber of transmit antennas is even. We have shown that the
scheme achieves full transmit diversity and has larger cod-
ing gains than cyclic codes for some typical applications.
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