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ABSTRACT

This paper deals with the problem of radio localization of mov-

ing terminals in wideband indoor applications with mixed line-of-

sight/non-line-of-sight (LOS/NLOS) conditions. In dense multi-

path scenarios, the bias introduced by NLOS in angle and/or time

of arrival estimates is reduced by employing a Hidden Markov

Model (HMM) based algorithm. The proposed algorithm jointly

tracks both the mobile station position and the LOS/NLOS con-

ditions exploiting continuity information. Numerical results show

that the HMM-based algorithm experiences non meaningful degra-

dation in mixed LOS/NLOS propagation with dense multipath.

1. INTRODUCTION

Accurate localization in radio systems has received great attention

over the last years. Without exploiting satellite-aided positioning

systems (e.g., by Global Positioning System), several radio posi-

tioning techniques [1]-[2]-[3] have been proposed exploiting only

local radio measurements while transmitting. These techniques

are based on one or more measurement types such as angle (AOA

- Angle of Arrival), time (TOA - Time Of Arrival) or time differ-

ence (TDOA - Time Difference of Arrival) of arrivals and power

profile (RSS - Received Signal Strength).

In the next generation indoor wideband mobile systems, such

as Ultra Wide Band (UWB) and Orthogonal Frequency Divi-

sion Multiplexing (OFDM) systems, radio localization using time

or/and angle based methods (TOA, TDOA and AOA) is a critical

task due to high resolution and dense multipath effects. The lo-

cal positioning problem is worsened by non-line-of-sight (NLOS)

conditions due to signal blocking. To reduce the estimation bias

introduced by the NLOS issue and alleviate multipath effects, here

we propose to exploit both locality of the mobile station (MS) po-

sition and LOS/NLOS conditions for all links by using a HMM-

based (Hidden Markov Model) [4] tracking algorithm here refer-

enced as Detection/Tracking Algorithm (D/TA) [5]. The hidden

status of each MS is characterized by its discretized position and

LOS/NLOS conditions along the cell, both modeled as homoge-

neous first-order Markov chains. D/TA is a forward-only algo-

rithm that can work in real time and it maximizes the a-posteriori

probability of joint position-LOS/NLOS state for each MS exploit-

ing all the independent RSS measurements (with respect to all ac-

cess points - APs) available up to the current instant. With respect

to other alternatives, such as the extended Kalman filter (EKF) [6],

the D/TA algorithm does not rely on linearization and Gaussian

assumptions but it has about the same computational complexity.

For the sake of simplicity, only the single target D/TA will be pre-
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sented; the interested reader can refer to [5] for multitarget exten-

sion. Notice that the HMM framework here presented may model

either self-positioning or remote localization systems. Moreover,

it may be employed in different scenarios and only observation

probabilities have to be changed accordingly.

The paper is organized as follows: in the next section the lo-

calization problem is described, while Section 3 shows the HMM

framework for joint tracking of MS position and sight condition.

The DT/A method is recalled in Section 4 while numerical results

are discussed in Section 5. Section 6 draws some conclusions.

2. PROBLEM FORMULATION

At time instant i, for i ∈ {0, 1, . . . , I − 1}, the mobile station is
placed at the spatial location qi = [q

(x)
i , q

(y)
i ], with q

(x)
i ∈ X =

{0, . . . , N1 − 1} and q(y)i ∈ Y = {0, . . . , N2 − 1} denoting the
coordinates within a regular 2D gridQ = X ×Y of sizeN1×N2.

The MS receives (or transmits) a radio signal from (or to) L fixed
access points (AP) that are located in known positions qAP� =

[q
(x)
AP�, q

(y)
AP�] ∈ Q, for � ∈ {1, . . . , L}. The signal ri,� ∈ RM×1

measured over the �th MS-AP link is modeled as:

ri,� = [ri,�(0) · · · ri,�(M − 1)]T = zi,� +wi,�, (1)

where zi,� ∼ N (0,Ci,�) represents the desired signal

and wi,� ∼ N (0,Cw) is AWGN with known covariance

Cw = σ2wIM (IM is the unitary matrix of size M × M ).
The signal zi,�, representative of arrivals in a dense multi-

path scenario, is non-stationary, white, with known covariance

Ci,� = diag[σ2z(τ i,�,∆τ i,�, 0), . . . , σ
2
z(τ i,�,∆τ i,�,M − 1)]

where σ2z(τ ,∆τ , t) is an exponential power delay profile (PDP)

σ2z(τ ,∆τ , t) = σ
2
z(τ)ρ

(t−τ)u(t− τ −∆τ), (2)

decaying from the first arrival delay τ+∆τ with attenuation factor
ρ ≤ 1 (recall that u(t) = 1 for t ≥ 0 and u(t) = 0 elsewhere);
this is also referred as filtered Poisson process [7]. The first arrival

delay τ i,�+∆τ i,� is the sum of the propagation time τ i,� over the
LOS distance di,� = ||qi − qAP�|| ,

τ i,� = 〈di,�/c〉 , (3)

and the excess delay ∆τ i,� ≥ 0 experienced in the NLOS case.
Here 〈x〉 denotes the nearest integer for the real value x, c is the
propagation velocity (normalized by ∆q/∆t where ∆q and ∆t
are the spatial and temporal sampling intervals assuming a regular

and squared sampling grid). Clearly, it is ∆τ i,� = 0 in case of
LOS conditions, while in NLOS the additional delay∆τ i,� > 0 is
modeled as a random variable with known distribution f∆τ (δ).

Notice that the PDP (2) depends on the path-loss law σ2z(τ) =
σ2z(τ ref)(τ/τ ref)

−α where σ2z(τ ref) is the power received at a ref-
erence distance dref = cτ ref and α is the path-loss exponent
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(α=2 ÷ 4). The SNR is defined as SNR(τ ) = σ2z(τ)/σ
2
w =

SNRref · (τ/τ ref)−α where SNRref = σ2z(τ ref)/σ2w.
In signal model (1) the delay τ i,� + ∆τ i,� represents an

abrupt change or breakpoint (BP) between the two processes

{ri,�(t)}τi,�+∆τi,�−1t=1 and {ri,�(t)}Mt=τi,�+∆τi,� that are charac-
terized by different statistical properties. In fact, it is:

Var[ri,�(t)] =

{
σ2w, t < τ i,� +∆τ i,�
σ2w + σ

2
z(τ i,�)ρ

t−τi,� , t ≥ τ i,� +∆τ i,� . (4)

According to (3), in LOS conditions the BP event is linearly re-

lated to di,�; the MS-AP distance estimate can thus be obtained by
simply detecting the BP position. After ranging from each of the

L ≥ 3MS-AP links, the MS location qi can be estimated through
triangulation of the L distances. Nevertheless, this method leads
to false locations in case of NLOS, as the BP depends on the ficti-

tious distance di,� +∆di,�, where the bias ∆di,� = c∆τ i,� ≥ 0
is due to the propagation over reflected path.

To avoid false locations we propose a tracking algorithm that

estimates the sequence of positions q0,q1, ...,qi by exploiting the
whole set of observations Ri = [r0, r1, . . . ,ri], composed of all
the signals measured over the L links up to the current instant i.
Vector ri = [rTi,1, . . . , r

T
i,L]

T collects all the observations at the

ith time. The proposed HMM method is based on the assumption
that both the mobile position qi and the L link sight conditions are
Markov chains whose state is hidden in the measured signals Ri

and must be jointly recovered. For the estimation of the MS loca-

tion we propose a first-order HMM tracking algorithm [5] that can

cope also with LOS/NLOS situations, by exploiting the memory

introduced on the MS trajectory and the knowledge of the distrib-

ution f∆τ (δ) to compensate the bias∆τ i,�.

3. HMM FOR RADIO LOCALIZATION

3.1. Set of states and transition probabilities

Let the MS location qi be defined in the discrete finite setQ con-
sisting of N1N2 positions n =[n1, n2], with n1 ∈ X , n2 ∈ Y .
The MS movement within the 2D space is modeled as the follow-

ing first-order homogeneous Markov model:

qi = qi−1 + vi, (5)

where vi is the 2D discrete driving process with known dis-

tribution fv(n1, n2) = P [vi = n]. The transitions be-
tween states are governed by the N1N2 × N1N2 probabilities

a
(p)
m,n = P [qi = n|qi−1 = m] = fv(n1 − m1, n2 − m2)
for m =[m1,m2], n =[n1, n2] ∈ Q. Examples of distribution
fv(n1, n2) are given in Fig. 1.

In addition to its position, at each time instant i the MS is
characterized also by L sight conditions (LOS or NLOS) with re-
spect to the APs. These binary conditions are here described by

a set of L i.i.d. random processes si = [si,1, . . . , si,L] ∈ SL,
with S ={1, 2}. Each sight process, si,� ∈ S, is si,� = 1
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Fig. 1. Examples of distribution fv(n1, n2) for random 2-D

driving process vi. Notice that a large fv(0, 0) value indicates
that the MS is frequently still as shown in figures a) and c).

in case of LOS and si,� = 2 in case of NLOS. It is modeled
as a 2-state first-order Markov chain with transition probabilities

a
(s)
h,k = P [si,� = k|si−1,� = h] for h, k ∈ S. Notice that all
probabilities a

(s)
h,k depend only on two parameters: p1 and p2. The

former is the probability p1 = a
(s)
1,1 to remain in the LOS state

while the latter is the probability p2 = a
(s)
2,2 to remain in the NLOS

state. In fact, due to probability normalization, it is: a
(s)
12 = 1− p1

and a
(s)
21 = 1 − p2. Assuming independence between the L

sight conditions, the transition probabilities for the overall sight

process si are a
(s)
h,k =

∏L
�=1 a

(s)
h�,k�

for any h = [h1, . . . , hL],

k = [k1, . . . , kL] ∈ SL. The sight process si is also assumed to
be independent of the position process qi.

The complete HMM for localization is now defined includ-

ing both the position and the sight processes. Namely, the HMM

state is defined by the joint variableOi = (qi, si), that takes val-
ues in a discrete set of 2LN1N2 possible position/sight combina-

tions. According to the independence assumption for qi and si,

the probability of transition fromOi−1 = (m,h) toOi = (n,k)

is a
(ps)
(m,h),(n,k) = a

(p)
m,na

(s)
h,k for m,n ∈ Q and h,k ∈ SL. A

zero state Oi = 0 is also introduced to indicate the absence of

the MS signal (i.e., no MS detected), yielding the overall set O of
2LN1N2+1 position states. The (2

LN1N2+1)×(2LN1N2+1)
transition matrix A for the whole set of states, including the zero

state, has elements defined as:

a0,0 = 1− θ a0,(n,k) = θ/(2
LN1N2)

a(m,h),0 = ν a(m,h),(n,k) = (1− ν)a(ps)(m,h),(n,k)Γm
(6)

where m,n ∈ Q and h,k ∈ SL. Here, the parameters θ and ν
represent the probabilities of trajectory initiation and termination,

respectively. Notice that they are assumed to be independent of

the specific non-zero state involved in the transition. The term

Γm is used to normalize the rows of A to 1 so that a(m,h),0 +∑
n∈Q,k∈SL a(m,h),(n,k) = 1 for any (m,h) (see [5] for further

details on normalization strategies and edge effects due to the finite

number of spatial positions).

3.2. Initial state distribution

The initial state distribution is defined by assigning the 2LN1N2+
1 initial probabilities π = {π0, {πn,k}}, where π0 =
P [O0 = 0] and πn,k = P [O0 = (n,k)]. If no a-priori knowl-
edge of the initial position is given, we can simply impose a uni-

form initialization probability all over the 2LMN + 1 states, i.e.
π0 = 1/2 and πn,k = 1/(2

L+1N1N2).

3.3. Observation probabilities

The observation employed in the HMM framework is the vector

ri ∈ R
ML×1. We assume the L observations {ri,�}L�=1 con-

ditioned to the non-zero state Oi = (n,k) to be statistically
independent; the observation probability density function (pdf)

bn,k (ri) = P [ri|Oi = (n,k)] can be calculated as:

bn,k (ri) =
∏L

�=1
P [ri,�|qi = n, si,� = k�] . (7)

Let us first consider the LOS case (si,� = 1), the �th condi-
tioned pdf in (7) is:

P [ri,�|qi = n, si,� = 1] = Λ(ri,�, 〈‖n− qAP�‖ /c〉 , 0) (8)

where Λ(r, τ ,∆τ) is the likelihood function for the generic ob-
servation r = [r(0), . . . , r(M − 1)]T , LOS delay τ and NLOS
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Fig. 2. Example of observation for LOS. From top to bottom:

a) measured signal (solid line indicates σ2z(τ = 50,∆τ = 0, t)
with ρ = 0.99); b) observation pdf as a function of the delay; c)
observation pdf as a function of the position.

additional delay ∆τ . Being φ(x) = exp(−x2/2)/√2π the nor-
mal function, from model (1) we get:

Λ(r, τ ,∆τ) =

τ+∆τ−1∏
t=0

φ
(
r(t)
σ0

)
σ0

M−1∏
t=τ+∆τ

φ
(

r(t)
σ1(τ,∆τ,t)

)
σ1(τ ,∆τ , t)

, (9)

where σ20 = σ2w and σ
2
1(τ ,∆τ , t) = σ2w + σ

2
z(τ ,∆τ , t) denote,

respectively, the signal power within the backward (t < τ +∆τ )
and the forward (t ≥ τ +∆τ ) sections of the measurement r for
the breakpoint instant τ +∆τ . An example of conditioned pdf for
LOS is given in Fig. 2.

On the other hand, for NLOS condition, it is:

P [ri,�|qi = n, si,� = 2]=
∑
δ>0

f∆(δ)Λ (ri,�, 〈‖n− qAP�‖ /c〉 , δ).
(10)

For large SNR, we can use the following approximation:

σ21(τ ,∆τ , t) = σ21(τ)ρ
t−τ , for t ≥ τ + ∆τ , with σ21(τ) =

σ2w + σ
2
z(τ). For∆τ = 0 equation (9) reduces to:

Λ(r, τ , 0) ≈ β(M − τ)
(
√
2πσ0)M

exp

[
−E0(τ)
2σ20

− E1(τ )

2σ21(τ)

]
(11)

where β(x) = (ρ−
x−1
4

σ0
σ1(τ)

)x. Terms E0(τ ) =
∑τ−1

t=0 r
2(t)

and E1(τ ) =
∑M−1

t=τ r2(t)ρτ−t denote the signal energy for the
backward and forward section, respectively. For ∆τ > 0 it is
Λ(r, τ ,∆τ ) = Λ(r, τ , 0) · Γ(r, τ ,∆τ) with

Γ(r, τ ,∆τ) ≈
exp

[
−E0(τ+∆τ)−E0(τ)

2σ2
0

− ρ−∆τE1(τ+∆τ)−E1(τ)

2σ2
1
(τ)

]
β(∆τ)

.

(12)

Notice that for the zero-state the conditioned pdf b0 (ri) =
P [ri|Oi = 0] is defined as:

b0 (ri) =
1

(
√
2πσw)LM

exp

[
− 1

2σ2w

L∑
�=1

M−1∑
t=0

r2i,�(t)

]
. (13)

In the followings, the HMM parameter set is indicated accord-

ing the compact notation λ = (A,B,π) where B is the observa-
tion density set defined as B = {b0(·), {bn,k(·)}}.

4. DETECTION/TRACKING ALGORITHM

The maximum likelihood estimate (MLE) Ôi = (q̂i, ŝi) may be
directly obtained by maximizing the likelihood function (7):

Ôi = argmax
(n,k)∈O

∏L

�=1
P [ri,�|qi = n, si,� = k�] . (14)

MLE is a local estimate based on the ith measurement vec-
tor ri only. On the contrary, the HMM tracking algorithm

considers all measurements (Ri) observed up to the ith in-
stant. Given the set of HMM parameters λ (supposed known),
the D/TA [5] estimates the position-sight state Oi = (qi, si)
at the ith instant by maximizing the a-posteriori probability
γi (n,k) = P [Oi = (n,k)|Ri, λ]: Ôi = argmax

(n,k)∈O

γi (n,k).

From Bayes’ theorem it is:

γi (n,k) = µibn,k (ri)P [Oi = (n,k)|Ri−1, λ] , (15)

where µi is a normalization term such that γi (0) +∑
n,k γi (n,k) = 1. The conditioned pdf bn,k (ri) is ob-

tained as described in Section 3.3, while the a-priori pdf

P [Oi = (n,k)|Ri−1,λ] can be calculated from the a-posteriori
pdf for the previous instant i−1 through the transition probabilities
of the Markov chain:

P [Oi = (n,k)|Ri−1, λ] =
∑

(m,h)∈O

a(m,h),(n,k)γi−1 (m,h) .

(16)

At the first step (i = 0), the initialization of the a-posteriori
probabilities is obtained as: γ0 (n,k) = µ0 bn,k (r0)π(n,k),
γ0 (0) = µ0 b0 (r0)π0.

5. SIMULATION RESULTS

The localization performance is evaluated by simulating a MS

moving within a circular area (e.g. diameter D = 60) and ex-
changing signals with L = 3 equidistant APs placed on the bor-
der of the layout (the area close to each AP is not used). The

changes of the MS location over the time are simulated accord-

ing to a Gaussian-shaped pdf fv(n1, n2) (as in Fig. 1a). The
sight conditions {si,�}3�=1 are simulated by means of three in-
dependent first-order Markov chains. Measurements have length

M = 150; the first arrival delay τ i,� is obtained from (3) and the
additional NLOS delay∆τ i,� (for si,� = 2) has exponential distri-
bution f∆τ(δ) ∼ exp (1/σ∆τ ) with σ∆τ = 10. The signal power
σ2z(τ ,∆τ , t) is calculated according to the path-loss law, with ex-
ponent α = 2.4, SNRref = 40 dB at dref = 2. An exponential PDP
is simulated with ρ = 0.99. The algorithm performances are eval-
uated in terms of root mean square error (RMSE) of the location

estimate as a function of the spatial position over a trajectory of

I = 30000 time samples. For a given position q ∈Q, the RMSE
is evaluated as RMSE(q) = [

∑
j∈N(q) ||q−q̂j||2/I(q)]

1

2 , where

N (q) is the ensemble of all instants in which the trajectory flows
across q and I(q) is its cardinality.

An example is shown in Fig. 3. Here the trajectory has been

made smoother and shorter (I = 50) for visualization purposes.
The figure compares the true trajectory (thick line) with the esti-

mated ones (markers) obtained by a local MLE (left figure) and the
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Fig. 3. Examples of localization with local MLE (left) and D/TA

(right): the solid line indicates the true trajectory while the markers

show the estimated one.

D/TA (right figure). The errors of the estimate can be appreciated

from the lines that connect the true and the estimated positions.

False positioning for NLOS occurs only using local MLE.

Fig. 4 shows the RMSE of the estimate as a function of the

position q ∈Q for both the local MLE (Fig. 4a-4b) and the D/TA
(Fig. 4c-4d), in case of LOS only (p1 = 1, p2 = 0; Fig.4a-4c)
and for LOS/NLOS conditions (p1 = p2 = 0.7; Fig. 4b-4d). In
the MLE-LOS map the error increases in proximity of the APs,

while it is uniform in the middle of the layout. This effect is due to

false positioning errors occurring when one or more measurements

ri,� refer to a distant AP. These problems are solved by the D/TA

which yields a uniform error map all over the layout. The advan-

tage of the D/TA (especially in mixed LOS/NLOS conditions) is

more evident in Fig. 4e and 4f that show the {x = 0} sections of
the maps in Fig. 4a-4b-4c-4d. The local MLE yields very poor

performance, with RMSE ranging from 0 to 30, while the D/TA
error is stable under 5, in both LOS and mixed LOS/NLOS cases.

6. CONCLUSIONS

A novel approach based on HMM has been proposed to track lo-

cation of moving terminals. The proposed algorithm alleviates

the LOS/NLOS problem in dense multipath conditions by adding,

for each radio link, the sight state. Simulations show that perfor-

mances achieved when accounting for LOS/NLOS conditions are

similar to those in ideal LOS-only propagation environment.
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