
AN ADAPTIVE VERSION OF THE ALGEBRAIC CONSTANT MODULUS ALGORITHM

Alle-Jan van der Veen

Delft Univ. of Technology, Dept. Electrical Eng./DIMES, Mekelweg 4, 2628 CD Delft, The Netherlands

The Algebraic Constant Modulus Algorithm (ACMA) is a very
effective block-algorithm for blind source separation. A particu-
lar feature is that it finds beamformers for all sources simultane-
ously. However, in cases with continuously transmitting sources
and varying environments, data-adaptive algorithms may be more
appropriate. In this paper, we derive an adaptive version of the
ACMA, with a reasonable computational complexity. Simulations
indicate that it is reliably tracking beamformers to all sources even
in a highly time-varying scenario.

1. INTRODUCTION

Constant modulus algorithms (CMAs) are used to separate multi-
ple coinciding constant modulus sources impinging on an antenna
array. A challenge is to find all independent beamformers, one for
each source. Most existing CMAs [2] find only a single source. In
the context of data-adaptive algorithms, the CM Array [3, 4] at-
tempts to find all sources recursively, by using a CMA to find a
source and an LMS to subtract it from the data. However, con-
vergence may be slow and subsequent signals tend to be less ac-
curate due to misadjustment; it is also possible that the same sig-
nal is found twice. The most reliable algorithms to date appear to
be OCMA [3, 5] and the related MUK [6]. In these algorithms,
a prewhitening step ensures that the transformed beamformers are
approximately orthogonal. Separately running CMAs are used to
track each source, and an orthogonalization step after each update
keeps the beamformers linearly independent. It is performing well
in stationary situations but can have tracking problems (swapping
of outputs) when channels are time-varying, e.g., due to fading.

The Algebraic Constant Modulus Algorithm (ACMA) [7] is
a non-iterative block-algorithm (acting on a batch of data) and
finds all independent beamformers algebraically, as the solution of
a joint diagonalization problem. The algorithm is quite effective
even on small blocks of data. The question studied in this paper is
whether this algorithm can be modified to become data-adaptive,
so that it can be used for tracking.

2. DATA MODEL AND ASSUMPTIONS

We assume a scenario with d constant modulus (CM) sources im-
pinging on M ≥ d receive antennas. Under the narrow-band as-
sumption, this leads to the model

xk = Ask +nk (1)

where the vector xk is a stacking of the M antenna outputs (xi)k at
discrete time k, sk is a stacking of the d source signals (si)k, and A
is the M×d array response matrix. The M-dimensional vector nk is
additive white Gaussian noise. We may collect the data in matrices:

X = [x1,x2, · · · ,xN] , S = [s1,s2, · · · ,sN] ,

This work was supported in part by the Dutch Min. Econ. Affairs under
TSIT 1025 “Beyond-3G”, and by NWO-STW under the VICI programme
(DTC.5893). An extended version of this paper will appear as a book chap-
ter [1].

and likewise for a noise matrix N, so that the model becomes

X = AS+N .

Under the assumption that A has full column rank, the objective
is to find a collection of beamformers {wi}, one for each source,
such that wH

i xk = (si)k is equal to one of the original sources, and
such that all sources are retrieved (obviously their ordering cannot
be established). We collect the beamformers in a matrix

W = [w1, · · · ,wd] , M ×d .

To ensure that independent beamformers correspond to inde-
pendent signals, we will consider a prewhitening operation which
also reduces the dimension of X from M to d rows. An underscore
is used to denote prefiltered variables. Thus, let X := FHX where
F : M×d is the prefilter. Let R̂x = 1

N XXH have eigenvalue decom-

position R̂x = ÛΣ̂ΣΣ2
ÛH, and let ÛsΣ̂ΣΣ

2
s Û

H
s be a rank-d truncated ap-

proximation (Û has d columns). We choose F = ÛsΣ̂ΣΣ
−1/2
s ; in that

case R̂x := 1
N XXH = I, and at the same time it reduces the dimen-

sion of X from M rows to d. After prefiltering, we have the model

X = AS+N , where A := FHA , N := FHN .

This is essentially the same model as before, except X has only d
channels and A : d × d is square. The original beamforming prob-
lem is now replaced by finding a matrix T : d × d with columns ti,
acting on X. After T has been found, the beamforming matrix on
the original data will be W = FT.

3. CMA, OCMA AND MUK

The CMA(2,2) algorithm [2] is given by the update equation

wk+1 = wk − µxk z̄k , zk = (|yk |2 −1)yk

where yk = wH

kxk is the output of the beamformer using its cur-
rent estimate, and µ is a small step size. The “Orthogonal CMA”
(OCMA) [3, 5] premultiplies the update term by R̂−1

x to make the
algorithm independent of the scaling of the data:

wk+1 = wk − µR̂−1
x xk z̄k , zk = (|yk |2 −1)yk . (2)

We can directly interpret this algorithm in terms of the prewhiten-

ing step. Indeed, define t = R̂1/2
x w and x = R̂−1/2

x x. Premultiplying

(2) with R̂1/2
x leads to

tk+1 = tk − µxkz̄k , zk = (|yk |2 −1)yk

where yk = wH

kxk = tH

kxk. Therefore, OCMA is equal to the ordi-
nary CMA, but in the whitened domain. The algorithm is easily
modified to update d beamformers in parallel:

Tk+1 = Tk − µxkz
H

k , zk = (yk � ȳk −1)�yk

where yk = WH

kxk = TH

kxk and � denotes the Schur-Hadamard
product (entrywise multiplication). In spite of its appearance, the
beamformers are updated independently, and there is no guarantee
that they converge to independent solutions. However, since T is
supposed to be almost orthogonal and therefore well-conditioned,
it is straightforward to recondition T after each update.

IV - 8730-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

A simple technique for this is to compute an SVD of T as T =
∑σ ju jv

H

j , and to replace the singular values of T that are below
some threshold (e.g., smaller than 0.5) by 1:

T′ = recond(T) := ∑σ′
ju jv

H

j where σ′
j =

{
1, σ j < 0.5
σ j, σ j ≥ 0.5

(3)

A similar algorithm was proposed more recently, called the
Multi-User Kurtosis Algorithm (MUK) [6]. MUK is not specifi-
cally targeted for CM signals, but aims to separate statistically in-
dependent non-Gaussian signals by maximizing the absolute value
of the kurtosis of the output. For sources with a negative kurtosis,
this leads to [6]

Tk+1 = Tk − µxkz
H

k , zk = yk � ȳk �yk .

In [6], a condition that T should be orthogonal (rather than well-
conditioned) is maintained. This can be formulated as an orthogo-
nal Procrustes problem [8] of which the solution is

T =: ∑
j

σ ju jv
H

j ⇒ T′ = reorth(T) := ∑
j

u jv
H

j . (4)

The complexity of these algorithms is about 4dM + d3 + 5d2 per
update step, where 4dM is due to adaptive prewhitening, and d3 is
due to the reconditioning step.

4. THE ANALYTICAL CMA

The Analytical CMA (ACMA) [7] is based on the CMA(2,2) cost
function formulated as a Least Squares problem:

w = arg min
w

1
N ∑

k

(|ŝk |2 −1)2 , ŝk = wHxk . (5)

Using Kronecker product properties, we can write |ŝk |2 as

|ŝk |2 = wH(xkx
H

k)w = (x̄k ⊗xk)
H(w̄⊗w) .

We subsequently stack the rows (x̄k ⊗xk)
H of the data into a matrix

P (size N × M2), so that P = [X̄ ◦X]H where ◦ denotes the Khatri-
Rao product. Also introducing y = w̄ ⊗ w and 1 = [1, · · · ,1]T, we
can write (5) as

1
N ∑

k

(|ŝk|2 −1)2 =
1
N
‖Py−1‖2 . (6)

It is shown in [9] that this can be conveniently rewritten in the
whitened domain as

t = argmin
y = t̄⊗ t
‖y‖ = 1

yHĈy (7)

where w = Ft, F is the prewhitening filter as specified before, and

Ĉ := 1
N PHP− 1

N PH1 · 1
N 1HP (8)

= 1
N ∑k(x̄k ⊗xk)(x̄k ⊗xk)

H −
[

1
N ∑k x̄k ⊗xk

][
1
N ∑k x̄k ⊗xk

]H

.

To solve this problem, the ACMA approach [7] is to first find
an orthonormal basis Vn for the the d-dimensional approximate
nullspace of Ĉ, i.e., the set of d least dominant eigenvectors of Ĉ.
We subsequently look for a set of d unit-norm vectors t̄i ⊗ ti that
best spans the same subspace,

T = argmin
‖ti‖ = 1
M invertible

‖VnM− (T̄◦T)‖2
F . (9)

where T = [t1, · · · , td] is the set of beamformers in the whitened do-
main, T̄◦T := [t̄1 ⊗ t1, · · · , t̄d ⊗ td], and M is a full rank d×d matrix
that relates the two bases of the subspace. This problem can be rec-
ognized as a joint diagonalization problem, which is related to an

Given a block of data X = [x1, · · · ,xN]

1. Compute R̂x = 1
N ∑k xkx

H

k (M2N)

Compute the EVD R̂x = ÛΣ̂ΣΣ2
ÛH (M3)

Set the prewhitening filter F = ÛsΣ̂ΣΣ
−1/2
s (dM)

2. Prefilter the data, xk = FHxk (dMN)
Ĉ = 1

N ∑k(x̄k ⊗xk)(x̄k ⊗xk)
H − vec(R̂x)vec(R̂x)

H (d4N)

3. Compute Vn, the nullspace of Ĉ (≤ d6)

4. Initialize T = I
Until convergence:

M = VH
n(T̄◦T) (d4)

M′ = recond(M), equation (3) (d3)
Y = VnM′ (d4)
ti = π1(yi), i = 1, · · · ,d, equation (10) (d4)

5. Set W = FT and ŝk = WHxk (dMN)

Figure 1. ACMA using iterative implementation of the joint diag-
onalization.

eigenvalue problem and gives exact form results in the noise-free
case.

As inspired by [10], the problem (9) can be solved iteratively
using Alternating Least Squares: (i) given an initial value for T,
solve for M; (ii) for the new value of M, solve for T. Both steps
are simple to implement: for fixed T, solving for M gives

M = VH

n(T̄◦T) ,

whereas for fixed M, solving for T gives

T = argmin
‖ti‖=1

‖VnM− (T̄◦T)‖2 = argmin
‖ti‖=1

‖Y− (T̄◦T)‖2 ,

where Y = VnM = VnV
H
n(T̄◦T) is the projection of the previous

solution onto the estimated subspace. The problem decouples into
solving for the individual columns of T:

ti = argmin
‖ti‖=1

‖yi − (t̄i ⊗ ti)‖2 = argmin
‖ti‖=1

‖Yi − tit
H

i ‖2 ,

where Yi = vec−1(yi). The solution is given by an SVD of Yi and
retaining the dominant component, i.e.,

Yi =: ∑
j

σ ju ju
H

j , ti = u1 =: π1(yi) . (10)

We will denote this “projection onto rank-1” by ti = π1(yi).
The columns of T are processed independently. To avoid that

they converge to the same solution, we can apply a reconditioning
step on M, since it is expected to be close to unitary after prewhiten-
ing. The resulting iterative ACMA is summarized in figure 1. Also
the computational complexity of each step is indicated. Most of the
work is done in two steps: the construction of R̂x which has a com-
plexity of M2N, and the construction of Ĉ, which has a complexity
of d4N.

5. ADAPTIVE ACMA

To make the preceding block-algorithm adaptive, the following in-
gredients are needed:

1. Adaptive implementation of the prewhitening filter F,

2. Adaptive tracking of the nullspace of Ĉ,

3. Adaptive update of the joint diagonalization, or alterna-
tively, of the rank-1 mapping of each subspace vector.

IV - 874

➡ ➡

A suitable adaptive prewhitening algorithm appeared in [11]. This
algorithm combines an adaptive Cholesky factorization and inver-
sion with a subspace tracking algorithm based on PAST [12]. Its
complexity is order 4dM+3d2 per update step.

5.1. Adaptive tracking of Ĉ

We first derive an update equation for Ĉ. In the final algorithm
we will avoid to construct and store Ĉ, but will directly update its
nullspace using the update vectors of Ĉ.

So far, Ĉ was defined only in terms of a given batch of N sam-
ples, but we would like to convert this into an exponential window
(λ-scaling). As before, let P be an N ×d2 dimensional matrix with
rows yH

k := (x̄k ⊗ xk)
H, where xk is the received (whitened) sam-

ple at time k. For simplicity of notation, we will drop the under-
scores in this subsection from now on, since all data will be in the
whitened domain. According to equation (8)

Ĉ :=
1
N

PHP−
1
N2 PH11HP .

Comparing this matrix to

H :=
N

∑
k=1

[
1
yk

]
[1 yH

k] = [1 P]H[1 P] =
[

1H1 1HP
PH1 PHP

]
(11)

we see that N Ĉ is equal to the Schur complement H2,2 −H2,1H−1
1,1H1,2.

An adaptive update rule for Ĉ can be derived from an adaptive
update rule for H, where we scale previous estimates with λ, with
0 < λ < 1. Thus let Hk and Ck be defined as

Hk := (1−λ)
k

∑
i=1

λk−i
[

1
yi

]
[1 yH

i] =:

[
αk pH

k
pk Nk

]
, Ck :=Nk −

pkp
H

k

αk

then Hk is an unbiased estimate of H, due to multiplication with the
factor (1−λ), and Ck is an unbiased estimate of Ĉ. The update rule
for Ck which follows from this equation can be shown to be

Ck = λCk−1 + αk−1
αk

λ(1− λ) · (yk −pk−1/αk−1)(yk −pk−1/αk−1)
H

=: λCk−1 + βkckc
H

k .
(12)

where pk−1 and αk−1 are updated as

pk = λpk−1 +(1− λ)x̄k ⊗xk , αk = λαk−1 +(1− λ) . (13)

Therefore, the vector by which to update Ck−1 is equal to a scaling
of the modified data vector

ck := x̄k ⊗xk − pk−1/αk−1 . (14)

5.2. Adaptive tracking of the nullspace of Ĉ

We have to track the nullspace of Ĉ, a d-dimensional nullspace in
a d2-dimensional space. Currently the most promising and com-
putationally efficient algorithm for this appears to be the “Normal-
ized Orthogonal OJA” (NOOJA) [13]. It is of complexity 4dM, and
scaling-independent: if the input data ck is multiplied by a scalar,
then the resulting subspace estimate Vk is unchanged.

5.3. Adaptive update of the joint diagonalization

Using the preceding nullspace tracking algorithm in our applica-
tion, we can update the basis Vn of the nullspace of Ĉ given the
update vector ck in (14). The final step is an efficient implemen-
tation of the joint diagonalization. After the subspace update, the
iterative ACMA (figure 1) uses the previous estimate of the beam-
formers, T, and continues with the following three steps:

M = VH
n(T̄◦T)

Y = VnM = VnV
H
n(T̄◦T)

ti = π1(yi), i = 1, · · · ,d .

Given data X = [x1,x2, · · ·], compute ŝk = WH

kxk:

Initialize prewhitening filter F; T = Id×d , p = 0,α = 0
for k = 1,2, · · · do

1. Update F using xk [11] (4dM+3d2)
x = FHxk, the prewhitened input vector

2. Compute the update vector c for Ĉ: (d2)
c = x̄⊗x −p/α
p = λp+(1− λ)x̄ ⊗x
α = λα+(1− λ)

Compute Y = T̄◦T (d3)
Regard Y as a basis of the nullspace of Ĉ, and
update it using c [13] (4d3)

3. for i = 1, · · · ,d do (d3)
Yi = vec−1(yi)
ti = Yiti (one step of a power iteration)
ti = ti/‖ti‖

end

4. T = recond(T), equation (3) (d3)

5. ŝk = THx (d2)
4dM+6d3

Figure 2. Adaptive implementation of ACMA.

This projects T̄ ◦ T onto the estimated subspace, resulting in Y,
and subsequently maps the columns of Y back to the Kronecker-
product structure, resulting in new estimates of the columns ti of
T. However, the complexity of the projection is too high (order d4

instead of d3).
Therefore, the following modification is introduced: instead of

updating the basis Vn, we compute T̄◦T and regard it as the current
estimate of the subspace basis (i.e., set Vn = T̄◦T). Using this ba-
sis, the subspace update is performed, giving Y, and then the result
is mapped back to the Kronecker-product structure. In this context,
the update performed by the NOOJA algorithm is interpreted as a
Householder reflection which tries to make T̄◦T orthogonal to the
current update vector ck.

The last step of the algorithm is the mapping of the columns yi
of Y to a Kronecker-product structure, yi =: t̄i ⊗ ti, or equivalently,

Yi = tit
H

i

where vec(Yi) = yi. Instead of computing an SVD (complexity d3

for i = 1, · · · ,d), we can apply a power iteration [8] for this, which
takes the general form

vk+1 = Yvk , k = 1, 2, · · ·

The best choice of an initial point is the previous estimate for ti,
and in this case, a single step of the iteration is sufficient to give a
good improvement of the estimate. The complexity of one update
step is d2 per subspace vector, or d3 in total.

The resulting algorithm is summarized in figure 2. As indi-
cated, the complexity of the algorithm is of order 4dM+6d3. This
is comparable to the complexity of OCMA and MUK.

6. COMPARISON OF MUK WITH ADAPTIVE-ACMA

We consider a uniform linear array with M = 4 antennas, d = 3
constant-modulus sources with directions [−10◦,20◦,30◦] and am-
plitudes [1, .8, .9]. To test the tracking behavior of the adaptive

IV - 875

➡ ➡

0 500 1000 1500
0

5

10

15

20

S
N

R
 o

f e
ac

h
so

ur
ce

 [d
B

]

time [samples]

Time−varying source characteristics

Figure 3. SNR of a time-varying channel (example).

0 5 10 15 20 25 30 35 40
−5

0

5

10

15

20

25

30
average output SINR per source

SNR [dB]

S
IN

R
 [d

B
]

Adaptive ACMA
MUK(µ

1
)

MUK(µ
2
)

M=4, d=3

µ
1
=0.05

µ
2
=0.01

λ=0.99

0 5 10 15 20 25 30 35 40
10

−1

10
0

10
1

10
2

number of port swaps per data set

SNR [dB]

nu
m

be
r

of
 p

or
t s

w
ap

s

Adaptive ACMA
MUK(µ

1
)

MUK(mu
2
)

M=4, d=3

µ
1
=0.05

µ
2
=0.01

λ=0.99

Figure 4. Performance of MUK and adaptive-ACMA in a time-
varying scenario: (a) average output SINR, (b) average
number of port swaps per interval (1500 samples).

algorithms, this scenario is made time-varying. Specifically, the
source amplitudes are varied in sinusoidal patterns with randomly
selected periods, with a maximum of 3 periods over the simulated
time interval (N = 1500 samples). An example is shown in figure
3. Moreover, the direction vectors {ai} of each source are not se-
lected on an array manifold, instead each entry of each ai is a uni-
modular complex number with an arbitrarily selected linear phase
progression, with at most one cycle per interval.

Figure 4(a) shows the average output SINR of each source
for MUK and Adaptive ACMA as a function of SNR, where the
average is over time, over the three sources, and over 300 monte
carlo runs, each with different randomly varying channels (there
has been no attempt to detect and remove “failed cases” where not

all independent sources are found). Since proper selection of the
step size µ in MUK is a difficult and sensitive issue, the results
for two different values are shown. Figure 4(b) shows the aver-
age number of times that a port swap occurred in a data run of N
samples (i.e., cases where a beamformer suddenly starts to track a
different source). For MUK, a larger µ gives faster tracking and
better output SINR, but also more port swaps: usually at least once
per data set. Both algorithms are performance limited at high SNR
due to the time-variation in the observation window, but overall,
Adaptive-ACMA is better in this particular scenario.

Since this is a new algorithm, it is unclear whether this is obser-
vation holds in general, although other simulations indicate that for
higher SNRs, Adaptive-ACMA is always several dB better and is
more reliable in recovering all weight vectors. Another experience
is that the performance of Adaptive-ACMA is limited by the speed
and accuracy of the nullspace tracking algorithm. NOOJA is not
completely satisfactory since it tends to be jittery in steady state,
and further improvements may be obtained by replacing NOOJA
by a more accurate (and more complex) nullspace tracker.

References

[1] A.J. van der Veen and A. Leshem, “Constant modulus beam-
forming,” in Robust Beamforming (P. Stoica e.a., ed.), ch. 8,
Wiley Interscience, 2005.

[2] J.R. Treichler and B.G. Agee, “A new approach to multi-
path correction of constant modulus signals,” IEEE Trans.
Acoust., Speech, Signal Processing, vol. 31, pp. 459–471,
Apr. 1983.

[3] R. Gooch and J. Lundell, “The CM array: An adaptive beam-
former for constant modulus signals,” in Proc. IEEE ICASSP,
(Tokyo), pp. 2523–2526, 1986.

[4] A.V. Keerthi, A. Mathur, and J.J. Shynk, “Misadjustment and
tracking analysis of the constant modulus array,” IEEE Trans.
Signal Processing, vol. 46, pp. 51–58, Jan. 1998.

[5] R. Pickholtz and K. Elbarbary, “The recursive constant mod-
ulus algorithm: A new approach for real-time array process-
ing,” in 27-th Asilomar Conf. Signals, Syst. Comp., pp. 627–
632, IEEE, 1993.

[6] C. Papadias, “Globally convergent blind source separation
based on a multiuser kurtosis maximization criterion,” IEEE
Trans. Signal Processing, vol. 48, pp. 3508–3519, Dec. 2000.

[7] A.J. van der Veen and A. Paulraj, “An analytical constant
modulus algorithm,” IEEE Trans. Signal Processing, vol. 44,
pp. 1136–1155, May 1996.

[8] G. Golub and C.F. Van Loan, Matrix Computations. The
Johns Hopkins University Press, 1989.

[9] A.J. van der Veen, “Asymptotic properties of the algebraic
constant modulus algorithm,” IEEE Trans. Signal Process-
ing, vol. 49, pp. 1796–1807, Aug. 2001.

[10] N.D. Sidiropoulos, G.B. Giannakis, and R. Bro, “Parallel fac-
tor analysis in sensor array processing,” IEEE Trans. Signal
Processing, vol. 48, pp. 2377–2388, Aug. 2000.

[11] S.C. Douglas, “Combined subspace tracking, prewhitening,
and contrast optimization for noisy blind signal separation,”
in Proc. 2nd int. workshop Indept. Component Anal. Source
Sep., (Helsinki, Finland)), pp. 579–584, June 2000.

[12] B. Yang, “Projection approximation subspace tracking,”
IEEE Trans. Signal Proc., vol. 43, pp. 95–107, Jan. 1995.

[13] S. Attallah and K. Abed-Meraim, “Fast algorithms for sub-
space tracking,” IEEE Signal Processing Letters, vol. 8,
pp. 203–206, July 2001.

IV - 876

➡ ➠

