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ABSTRACT

In wireless channels, time-selective fading effects arise mainly due
to Doppler shift and carrier frequency offset. In time-selective fad-
ing channels, Alamouti-based decoding scheme has an error floor
caused by interference due to time-selectivity. This paper proposes
decision feedback detector for Alamouti scheme to mitigate the ef-
fects of a time-selective fading channels. Moreover, we presents
the evaluation of the average bit error rate (BER) performance of
the proposed scheme over time-selective fading channels.

1. INTRODUCTION

As wireless communication systems look to make the transition
from voice communication to interactive Internet data, achieving
higher data rates become both increasingly desirable and challeng-
ing. The advantages of using multiple antennas at both the transmit
and receive ends of a wireless communications link have recently
been noted. Recently, space-time coding (STC) was proposed as
an alternative and attractive solution for high-capacity data trans-
mission in wireless systems [1]. In particular, Alamouti [2] dis-
covered a remarkable space-time block coding (STBC) scheme
for transmission with two transmit antennas achieves full diversity
gains using a linear maximum-likelihood (ML) decoder. Alam-
outi’s STBC has been adopted in several wireless standards such
as IS-136, WCDMA, and CDMA-2000.

Most existing STC schemes have been developed for flat fad-
ing channels. Different from [2], we consider here more realistic
time-selective but frequency-flat fading channels. In wireless mo-
bile communications, time selectivity is mainly caused by Doppler
shifts and carrier frequency offsets, which are jointly independent.
Time-selective fading channels can be modeled either determinis-
tic models or random processes. Typically, deterministic channel
models require estimates of more parameters than random mod-
els, which makes to sensitivity due to over-parameterization. In-
formation theoretic results have been shown that the first-order
Gauss-Markov random processes provides a accurate model for
time-selective fading channels [3].

The impact of time-selective fading channels on the perfor-
mance of the transmit-diversity technique proposed by Alamouti
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and the problem of channel tracking for the Alamouti scheme were
investigated in [4]. Alamouti-based decoding scheme has an error
floor caused by interference due to time-selectivity. In order to re-
move this error floor problem [4] proposed a decision feedback de-
tection scheme for Alamouti-based STBC transmission over time-
selective fading channels, but the exact evaluation of the average
bit error rate (BER) performance is unknown. In this paper, we
derive an exact average BER analysis for decision feedback detec-
tion scheme over time-selective fading channels. Numerical ex-
amples are presented in order to illustrate the effect and robustness
to time-selectivity.

2. SYSTEM MODEL AND ALAMOUTI SCHEME

Consider a wireless system equipped with two transmit antennas
and one receive antenna as shown in Fig. 1. Information symbols
s(n) are transmitted using Alamouti’s space-time block encoder.
Different from previous work [2] where the channels are assumed
flat fading, we consider time-selective but frequency-flat fading
channels. Denote by hi(n), i = 1, 2, the time-selective fading
channel from the ith transmit antenna to the receive antenna. At
the receive antenna, the two successive received samples y(2n)
and y(2n + 1) are given by

y(2n) = h1(2n)s(2n)+h2(2n)s(2n+1)+w(2n)

y(2n+1) = −h1(2n+1)s∗(2n+1)

+h2(2n+1)s∗(2n)+w(2n+1). (1)

In this paper, we assume the followings about the system model in
(1).

A1 The information sequences s(n) is zero-mean and white
with variance Es.

A2 The additive noise w(n) is zero-mean circularly symmetric
complex Gaussian (ZMCSCG) with variance σ2

w.

A3 The channel hi(n) is ZMCSCG with unit-variance.

A4 The information sequences, channels, and noise are jointly
independent.

A5 There is sufficient transmit antenna spacing, therefore, there
is no spatial correlation.

A6 The receiver knows the channel state information (CSI) per-
fectly.
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Fig. 1. Space-time block coded transmission diagram.

From the above assumption A1 and A2, we know that the averaged
received SNR per symbol is SNRav = Es/σ2

w.
Among various channel model, the information theoretic re-

sults in [3] have shown that the first-order Gauss-Markov process
provides a accurate model for time-selective fading channels and,
therefore, will be adopted henceforth. The dynamics of the chan-
nel state hi(n) are modeled by

hi(n) = αhi(n − 1) + vi(n) (2)

where the vi(n) is the white complex Gaussian with zero-mean
and covariance σ2

v/2 per dimension and is statistically indepen-
dent of hi(n − 1). Parameter α ∈ [0, 1] is the fading correlation
coefficient that characterizes the degree of time variations. In wire-
less mobile communications, channel time-varying characteristics
arise mainly due to Doppler shifts arising from relative motion be-
tween the transmitter and the receiver, and the carrier frequency
offsets due to the transmitter-receiver oscillators’ mismatch. De-
note by fo the carrier frequency offset and by Ts the symbol dura-
tion. We can factorize hi(n) into

hi(n) = h̄i(n)ej2πfoTsn. (3)

where h̄i(n) and ej2πfoTsn account for the Doppler and the carrier
frequency offset effects, respectively. From assumption A3, we
know that

σ2
v = 1 − |α|2, α = E[hi(n)h∗

i (n − 1)]. (4)

The fading correlation coefficient is determined by the channel
model, the maximum Doppler frequency fd and symbol duration
Ts. We consider three channel models: classic, uniform, and two-
path models, in which the fading correlation coefficients are given
by

α =

⎧⎨
⎩

J0(2πfdTs)e
j2πfoTs , classic model

sinc(fdTs)e
j2πfoTs , uniform model

cos(2πfdTs)e
j2πfoTs , two-path model

(5)

where J0(·) is the zeroth-order Bessel function of the first kind.
The receiver observations y(2n) and y(2n+1) corresponding

to the two symbol periods are given by

y(n) = H(n)s(n) + w(n) (6)

where, y(n) = [y(2n) y∗(2n+1)]T ; s(n) = [s(2n) s(2n+1)]T ;
w(n) = [w(2n) w(2n + 1)]T ; and the channel matrix

H(n) =

[
h1(2n) h2(2n)

h∗
2(2n + 1) −h∗

1(2n + 1)

]
. (7)

Because of the white Gaussian noise, the joint maximum-likelihood
(ML) detector choose the pair of symbol s(n) to minimize

‖ y(n) − H(n)s(n) ‖2 . (8)

To decode s(n), the space-time block decoder is designed by form-
ing the two consecutive output sample vector, z(n) = [z(2n) z(2n+
1)]T , as

z(n) = HH(n)y(n). (9)

Based on the definition (7), it follows by

R(n) = HH(n)H(n) =

[
ρ1(n) ε(n)
ε∗(n) ρ2(n)

]
(10)

where

ρ1(n) = |h1(2n)|2 + |h2(2n + 1)|2,
ρ2(n) = |h1(2n + 1)|2 + |h2(2n)|2, and

ε(n) = h∗
1(2n)h2(2n) − h∗

1(2n+1)h2(2n+1). (11)

From (9), we know that

z(n) =

[
ρ1(n) 0

0 ρ2(n)

]
s(n)

+

[
0 ε(n)

ε∗(n) 0

]
s(n) + HH(n)w(n). (12)

The first part in (12) contains the maximum ratio combined sig-
nals from the two transmit antennas whereas the second part con-
tains inter-symbol-interference (ISI) on the off-diagonal elements
caused by time-selective channels [4].

BER performance analysis of the detector (12) is possible for
a given constellation under perfect channel knowledge. We first
obtain from (12),

z(2n) = ρ1(n)s(2n)+ε(n)s(2n + 1)+

h∗
1(2n)w(2n)+h2(2n + 1)w∗(2n + 1). (13)

Treating the interference as noise and after some mathematical ma-
nipulation about h1(2n) and h2(2n + 1), we compute the instan-
taneous SNR γ(n) as following

γ(n)=
1
2
ρ2
1(n)Es

[ρ1(n)σ2
v+{κ(n)−ρ1(n)}σ4

v]Es+ρ1(n)σ2
w

(14)

where Es denote the symbol energy of s(n) and κ(n) = |h1(2n)|2·
|h2(2n)|2. A similar equation can be obtained for s(2n+1). Sup-
posing that QPSK modulation is used, the BER Pb(n) can be ex-
pressed as following equation. We neglecting the fourth order term
σ4

v (≈ 0). When Es � σ2
w (high SNR), we observe that Pb(n)

does not decrease with Es but approach an error floor given by

Pb(n) = Q
(√

2γ(n)
)
≈ Q

(√
ρ1(n)

σ2
v

)
. (15)

In time-selective fading channels, Alamouti-based decoding
scheme has an error floor caused by interference as shown in (12).
In order to remove this error floor, we do not model the interfer-
ence in (12) as noise, but treat it as ISI and propose the decision
feedback detector, to decode s(n) from y(n), at the cost of smaller
receiver complexity.
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3. PROPOSED DECISION FEEDBACK DETECTOR

From (10), we know that R(n) is Hermitian, therefore, it has a
unique Cholesky factorization of the form R(n) = GH(n)G(n),
where G(n) is lower triangular with real diagonal element. With
H(n) defined by (7), we can verify easily that

G(n) =
1√

ρ2(n)

[
ρ0(n) 0
ε∗(n) ρ2(n)

]
(16)

where

ρ0(n)= |h1(2n)h∗
1(2n+1) + h2(2n)h∗

2(2n+1)|. (17)

Multiplying both vectors in (8) by the unitary matrix
[
H(n)G−1(n)

]H
,

we find that the ML detector can be equivalent choose s to mini-
mize

‖ x(n) − G(n)s(n) ‖2 . (18)

Substituting (6), we find that the output x(n) is related to s(n) by

x(n)=[H(n)G−1(n)]Hy(n)=G(n)s(n)+n(n) (19)

where the white Gaussian noise n(n) has the same statistics as
w(n). The decision feedback detector uses a decision about s(2n)
to help make a decision about s(2n + 1). Because the chan-
nel model G(n) is lower triangular, there is no interference from
s(2n + 1) to x(2n), and thus a suboptimal decision ŝ(2n) can be
found by quantizing x(2n) as following

x(2n) =
ρ0(n)√
ρ2(n)

s(2n) + n(2n). (20)

Then, assuming this decision is correct, the contribution from s(2n)
in x(2n + 1) can be recreated and subtracted off, allowing the re-
ceiver to determine the decision ŝ(2n + 1) by quantizing the re-
sulting difference x′(2n + 1) as following

x′(2n + 1) = x(2n + 1) − ε∗(n)√
ρ2(n)

ŝ(2n)

=
√

ρ2(n)s(2n + 1) + n(2n + 1). (21)

From (21), we know that x′(2n + 1) has no interference compo-
nent, therefore, the receiver detect the symbol by quantizing the
resulting x′(2n + 1)

Let us analyze the BER performance of the proposed decision
feedback detector. The BER is thus again of the form P1(n) =

Q(
√

2γ1(n)) and P2(n) = Q(
√

2γ2(n)) for QPSK modulation,
where γ1(n) and γ2(n) are the effective instantaneous SNR for
(23) and (24), respectively:

γ1(n) =
ρ2
0(n)Es

2ρ2(n)σ2
w

, γ2(n) =
ρ2(n)Es

2σ2
w

. (22)

Firstly, let us compute P 2 for x′(2n + 1). The instantaneous
SNR per symbol γ2(n) is given by (22) and averaged SNR per
symbol is E[γ2] = Es/σ2

w = SNRav. Since h1(2n + 1) and
h2(2n) are independent and Gaussian, therefore, γ2 has a cental
χ2-distribution with four degrees of freedom [6]. Therefore, we
can get averaged BER P 2 [7, eq. (3.36)]

P 2 =

∫ ∞

0

Q
(√

2γ2(n)
)

p(γ2)dγ2

=
1

4

⎡
⎣1− 1√

1+ 2
SNRav

⎤
⎦

2⎡
⎣2+

1√
1+ 2

SNRav

⎤
⎦. (23)

Secondly, let us obtain the average BER P 1. x(2n) and in-
stantaneous SNR γ1(n) are given by (20) and (22), respectively.
The channel responses h1(2n) and h1(2n + 1) or h2(2n) and
h2(2n + 1) are mutually correlated complex Gaussian random
variables, and can be expressed using a standard transform of ran-
dom variables as following [6]

e1 =
h1(2n) − αh1(2n + 1)√

1 − |α|2 , e2 =
h2(2n + 1) − α∗h2(2n)√

1 − |α|2
(24)

where e1 and e2 are independent and identically distributed with
the same pdf as h1(2n+1) and h2(2n). Moreover, e1 and h1(2n+
1) are uncorrelated and e2 and h2(2n) are uncorrelated. Using
(24), instantaneous SNR γ1 can be rewritten as

γ1 =

∣∣∣∣∣α
√

ρ2(n)+
√

1−α2 · h
∗
1(2n+1)e1+h2(2n)e∗2√

ρ2(n)

∣∣∣∣∣
2

·SNRav

2
. (25)

To simplify this formula, we replace h∗
1(2n + 1)e1 + h2(2n)e∗2

with b1 + jb2, The distribution of b1 + jb2 reduces to the distribu-
tion of h1(2n), therefore, (25) can be rewritten as following

γ1 =

[
α

√
ρ2(n)

SNRav

2
+

√
(1−|α|2)SNRav

2
· b1

]2

+

[√
(1 − |α|2)SNRav

2
· b2

]2

= (A + B1)
2 + B2

2 . (26)

Therefore, given A, instantaneous SNR for signal x(2n), γ1 has a
noncentral χ2-distribution with two degrees of freedom as follow-
ing [6]

pγ1|A(γ1|a) =
4

(1−|α|2)SNRav
·exp

[ −4(a2+γ1)

(1−|α|2)SNRav

]

·I0

(
8a

√
γ1

(1 − |α|2)SNRav

)
(27)

where I0(·) is the zeroth-order modified Bessel function of the
first kind, i.e., I0(x) = J0(jx). And A in (26) has a Rayleigh
distributed with four degrees of freedom,

pA(a) =
8a

|α|2SNRav
· exp

[ −2a2

α2SNRav

]
. (28)

Therefore, pdf of γ1 can be obtained using (27) and (28) as fol-
lowing [8, (6.631)]

p(γ1) =

∫ ∞

0

pγ1|A(γ1|a) · pA(a)da =
2(1 − |α|2)

SNRav
·

exp

[ −2γ1

SNRav

]
·
[
1 +

2|α|2 · γ1

(1 − |α|2)SNRav

]
(29)

Averaging Q
(√

2γ2(n)
)

over this pdf, we can obtain the exact

BER P 1 of x1(2n) [7, eq. (3.36)], [8, (6.283)]

P 1 =

(
1 − |α|2)

2

⎡
⎣1 − 1√

1 + 2
SNRav

⎤
⎦ +

|α|2
4

⎡
⎣1− 1√

1+ 2
SNRav

⎤
⎦

2⎡
⎣2+

1√
1+ 2

SNRav

⎤
⎦ .(30)
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Fig. 2. Performance of the decision feedback detector for different
values of α.
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Fig. 3. Comparison of analytical and simulated BER of decision
feedback detector with different level of correlation.

Let us express the exact BER of the proposed decision feed-
back detector. Combining, we can obtain the BER P b as P b =
1
2
(P 1 + P 2)

P b =

(
1−|α|2

4

)⎡⎣1− 1√
1+ 2

SNRav

⎤
⎦+

(
1+|α|2

8

)
·

⎡
⎣1− 1√

1+ 2
SNRav

⎤
⎦

2⎡
⎣2+

1√
1+ 2

SNRav

⎤
⎦. (31)

4. SIMULATION RESULTS

In this section, we use computer simulations to evaluate the per-
formance of the analytical and simulated results. We use (3) to

generate hi(n) and assume that QPSK modulation is considered.
The generation of h̄i(n) follows the three channel models as de-
scribed in Section 2 with the parameters fd and Ts corresponding
to a carrier frequency of 1.9 GHz, a mobile speed of 250 km/h, and
a transmission rate of 144 kb/s. It does not exist the carrier fre-
quency offsets. It was shown that the decision feedback detector
is robust to carrier frequency offset [4]. QPSK modulation is con-
sidered. In this case, fading correlation coefficient α corresponds
to 0.9999.

Fig. 2 shows the BER performance of the decision feedback
detector for different values of α. The analytical BER perfor-
mance is given by (31). For simulated results, we average over
5000 channel and noise realizations for each SNR points. The an-
alytical results fit the simulated results correctly. We can see the
BER performance depends on the fading correlation coefficient α.
Fig. 3 shows the BER versus fdTs when perfect channel estima-
tion is assumed in three channel models as described in Section
2. As shown in this figure, the decision feedback detector in the
uniform channel gives the best BER performance and has more
robustness to channel correlation than the others.

5. CONCLUSION

We investigate the impact of fading correlation on the performance
of decision feedback detection scheme for Alamouti transmit di-
versity scheme in time-selective fading channels and derive an
exact average BER formula over time-selective fading channels.
Thorough analytical results, we evaluate the performance over time-
selective fading channels are described by the fading correlation
coefficient α. Some numerical examples are presented in order to
verify the results.
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