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ABSTRACT

Distributed (M -ary) detection and fault-tolerance have been
considered as two fundamental functions in the context of
large-scale sensor networks. Distributed multiclass classi-
fication fusion using error correcting codes (DCFECC) has
been proposed to provide good fault-tolerance capability in
wireless sensor networks. Minimum Hamming distance fu-
sion is an essential part of the DCFECC approach. In this
paper, we study the asymptotic performance of minimum
Hamming distance fusion for both fault-free and faulty situ-
ations when the number of sensors tends to infinity. We con-
clude that the error probability vanishes asymptotically as
long as the minimum Hamming distance dmin of the DCFECC
code approaches infinity, and the probabilities of correct lo-
cal classification for all hypotheses are greater than one half.
In case dmin/2, normalized by the number of sensors, can
be made larger than the largest local classification error, an
explicit expression for the error exponent of the DCFECC
system in terms of the Kullback-Leibler divergence can be
established. A converse where the DCFECC decoding error
is bounded away from zero is also addressed.

1. INTRODUCTION

There has been a great deal of recent interest in the notion
of deploying large number of networked sensors for event
or target classification in wireless sensor networks (WSNs).
In WSNs, fault-tolerance capability is critical since sensors
can be easily damaged or run out of battery energy [1].

Recently, a distributed classification fusion approach us-
ing error correcting codes (DCFECC) has been proposed to
provide fault-tolerance capability [2, 3, 4]. In the proposed
approach, an error-correcting code matrix is first designed
by either simulated annealing or cyclic column replacement
[3]. Each codeword forms a row in the code matrix, and
corresponds to one of the hypotheses. Each local sensor
employs a local classification rule to decide on the hypothe-

sis present, and outputs the respective codebit according to
the corresponding column in the code matrix. Upon receipt
of the binary received vector, the fusion center makes a mul-
ticlass decision by performing minimum Hamming distance
decoding (the fault-tolerant fusion rule). Unlike the conven-
tional approach that employs the optimal fusion rule (MAP
rule), such a fault-tolerant fusion rule can provide enough
distance among all hypothesis acceptance regions by means
of any feasible decoding algorithm. Therefore, the local de-
cision vectors could still fall into the correct acceptance re-
gion even if several sensor faults are present.

In this paper, we characterize the performance of min-
imum Hamming distance fusion when the number of sen-
sors is arbitrarily large. Asymptotic performance analysis
for the distributed binary detection problem has been inves-
tigated in [5, 6]. However, these asymptotic results were
considered from different perspectives. First, the MAP fu-
sion rule was used for the parallel fusion network in [5, 6].
Secondly, the optimality under the identical sensor assump-
tion was defined based on the error exponent. The results
obtained in this paper show that the probability of error for
minimum Hamming distance fusion can be upper-bounded
by a quantity determined by the minimum Hamming dis-
tance dmin of the DCFECC code, and the largest local clas-
sification error pmax among all hypotheses. As a conse-
quence, the DCFECC decoding error vanishes as long as
pmax < 1/2 and dmin approaches infinity. In situations
where dmin/(2N) can be made larger than pmax, where N
is the number of sensors, the DCFECC decoding error ap-
proaches zero exponentially fast. The above analytical re-
sults are then used to characterize the relationship between
dmin and the fault-tolerance capability of the DCFECC sys-
tem.
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Fig. 1. Distributed classification system architecture

2. SYSTEM MODEL

The distributed M -ary classification system considered in
this paper is depicted in Fig. 1.

In our system model, the local observations {yj}N
j=1

are assumed to be conditionally independent and identically
distributed across sensors given each hypothesis. Also as-
sume that each local sensor classifies its own observation,
independent of all others, to one of the M hypotheses using
an identical rule.1 Thus, the probability of classifying Hj

given that Hi is the true hypothesis is the same for all the
sensors, and is denoted by hj,i. Moreover, equally likely
hypotheses assumption is made.

In the DCFECC approach, a code matrix C is speci-
fied in advance. This code matrix is an M × N matrix
with element c�,j ∈ {0, 1}, where � = 0, . . . , M − 1 and
j = 1, . . . , N . Each hypothesis H� is associated with a
row in the code matrix. Each column of C stands for the
local binary outputs corresponding to the locally classified
hypotheses at the respective sensor. Thus, sensor j trans-
mits c�,j , if H� is declared present locally. For notational
convenience, c� � (c�,1, c�,2, . . ., c�,N ) is used to denote
the row of C corresponding to the hypothesis H�.

After the observation is locally processed, the local out-
put codebit u∗

j is transmitted to the fusion center. Due to
possible sensor faults (or channel transmission errors), the
fusion center receives the word u = (u1, u2, . . . , uN ) where
uj may or may not equal u∗

j . Finally, the minimum distance
fusion rule, or specifically, ω = arg min0≤�≤M−1d(u, c�),
where d(·, ·) is the Hamming distance, is employed to ob-
tain the multiclass decision ω. The tie-break rule is to ran-
domly pick a codeword from those with the same smallest
Hamming distance to the received vector.

1For DCFECC given in [3], the classifier at each local sensor is jointly
optimized with the global fusion rule (decoding rule) at the fusion center
based upon the specified code matrix. Thus, classifiers at the local sensors
might be different from each other. In this work, in order to simplify the
analysis, we assume that all the local sensors use the same classifier.

3. ASYMPTOTIC PERFORMANCE ANALYSIS

In this section, the performance of the DCFECC approach is
analyzed in a large scale sensor network environment. Re-
sults for both fault-free and faulty situations are provided.

3.1. Fault-free situation

Let dmin � mini �=j d(ci, cj), δN � dmin/(2N), pi � 1 −
hi,i, and pmax � max0≤i≤M−1 pi. The performance of
minimum Hamming distance fusion can be bounded above
according to the next theorem.

Theorem 1 If pmax < 1/2, then the average probability of
error satisfies

Pe ≤ (M − 1)
(√

4pmax(1 − pmax)
)dmin

,

where Pe � 1
M

∑M−1
i=0 Pr(decision �= Hi|Hi).

Proof:

Pr(decision �= Hi|Hi)

≤ Pr
(

d(u, ci) ≥ min
0≤�≤M−1,��=i

d(u, c�)
∣∣∣∣ Hi

)

≤
∑

0≤�≤M−1,� �=i

Pr (d(u, ci) ≥ d(u, c�)|Hi)

=
∑

0≤�≤M−1,� �=i

Pr

⎛
⎝ ∑

{j∈[1,··· ,N ] : c�,j �=ci,j}
(zi,j − z̄i,j) ≥ 0

∣∣∣∣∣∣ Hi

⎞
⎠ ,

where zi,j = uj ⊕ ci,j and z̄ represents the complement of
the binary 0-1 variable z. Observe that

Pr(zi,j = 1|Hi) =
M−1∑
k=0

(ci,j ⊕ ck,j)hk,i ≤ pi < 1/2,
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and {zi,j}N
j=1 are i.i.d. sequences given Hi is true. There-

fore,2

Pr

⎛
⎝ ∑

{j∈[1,...,N ]:c�,j �=ci,j}
(zi,j − z̄i,j) > 0

∣∣∣∣∣∣ Hi

⎞
⎠

≤
(√

4pi(1 − pi)
)d(c�,ci)

,

which results in

Pe =
1
M

M−1∑
i=0

Pr(decision �= Hi|Hi)

≤ 1
M

M−1∑
i=0

∑
0≤�≤M−1,� �=i

(√
4pi(1 − pi)

)d(c�,ci)

≤ (M − 1)
(√

4pmax(1 − pmax)
)dmin

.

�
Based on the above theorem, the average probability of

error can be bounded above by a quantity depending on
the accuracy of local classification. In other words, if lo-
cal classification is such that pmax < 1

2 , one can make the
DCFECC decoding error vanish as dmin approaches infinity.
It is reasonable to expect a converse statement in that when
the performance of local classifiers is poor (pmax > 1

2 ), it
will be hard to compensate for them by sensor fusion even
in the fault-free situation. This conclusion should also be
applicable to the system that employs the optimal MAP fu-
sion rule.

Theorem 1 also shows that the error exponent of min-
imum Hamming distance fusion is no smaller than −δN

log(4pmax(1− pmax)). The next theorem indicates that an-
other error exponent expression in terms of the Kullback-
Leibler divergence can be given if a code with δN > pmax

is employed. Due to the page limitation, the proof of the
next theorem is omitted.

Theorem 2 If δN > pmax, then

Pe ≤ exp
{
−N min

0≤i≤M−1
D(δN‖pi)

}
,

2Assume independent {Yj}m
j=1 with Pr(Yj = +1) = 1 − Pr(Yj =

−1) = qj . Let qmax � max1≤j≤m qj and assume qmax < 1/2. Then

Pr(Y1 + · · · + Ym ≥ 0) = Pr
(
es(Y1+···+Ym) ≥ 1

)
for s > 0

≤
m∏

j=1

E
[
esYj

]
=

m∏
j=1

(
qjes + (1 − qj)e

−s
)

≤ (
qmaxes + (1 − qmax)e−s

)m
.

Taking s > 0 to satisfy e2s = (1 − qmax)/qmax > 1, we obtain:

Pr(Y1 + · · · + Ym ≥ 0) ≤
(√

4qmax(1 − qmax)
)m

.

where

D(x‖y) � x log(x/y) + (1 − x) log[(1 − x)/(1 − y)]

is the binary Kullback-Leibler divergence function. In ad-
dition, if lim infN→∞ δN > δ > pmax, then for N suffi-
ciently large,

Pe ≤ exp
{
−N min

0≤i≤M−1
D(δ‖pi)

}
.

It needs to be pointed out that although, according to
Theorem 1, the probability of error can be bounded, and the
bound goes to zero if pmax < 1/2 and dmin approaches in-
finity, it is not necessarily true that if pmax > 1/2, Pe is
bounded away from zero. Indeed, it is only when the code
happens to use poor local classifications infinitely many times
that a bounded-from-below decoding error at the fusion cen-
ter will occur. For instance, this will happen when ci,j �=
c�,j for all � �= i occurs infinitely many times in j for some
pi > 1/2. A more specific condition under which the fusion
error probalility is bounded from below is given in the next
theorem.

Theorem 3 Pe is bounded away from zero, if

lim inf
N→∞

max
0≤i,�≤M−1

∑
{j∈[1,...,N ] : c�,j �=ci,j}(

2
M−1∑
k=0

(ci,j ⊕ ck,j)hk,i − 1

)
> 0.

Proof: The condition given in Theorem 3 implies that for
N sufficiently large, there exists an i = i(N) and an � =
�(N),3 such that

∑
{j∈[1,...,N ] : c�,j �=ci,j}

(
2

M−1∑
k=0

(ci,j ⊕ ck,j)hk,i − 1

)
> 0,

which implies that

m�,i � E

⎡
⎣ ∑
{j∈[1,··· ,N ] : c�,j �=ci,j}

(zi,j − z̄i,j)

⎤
⎦

=
∑

{j∈[1,...,N ] : c�,j �=ci,j}

(
2

M−1∑
k=0

(ci,j ⊕ ck,j)hk,i − 1

)

> 0.

3We omit their dependence of i and � on N for notational convenience.
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As a result,

Pr(decision �= Hi|Hi)

≥ Pr
(

d(u, ci) > min
0≤�≤M−1,� �=i

d(u, c�)
∣∣∣∣ Hi

)
≥ Pr (d(u, ci) > d(u, c�)|Hi)

= Pr

⎛
⎝ ∑

{j∈[1,··· ,N ] : c�,j �=ci,j}
(zi,j − z̄i,j) > 0

∣∣∣∣∣∣ Hi

⎞
⎠

≥ Pr

⎛
⎝ ∑

{j∈[1,··· ,N ] : c�,j �=ci,j}
(zi,j − z̄i,j) − m�,i > 0

∣∣∣∣∣∣ Hi

⎞
⎠

→ 1
2
, if d(c�, ci) approaches infinity,

where the last step follows from the central limit theorem
for the sum of independent bounded variables. Thus, the
claim of the theorem holds for the case that d(c�, ci) tends
to infinity. In the situation when d(c�, ci) is bounded, the
theorem is trivially valid. �

3.2. Fault-tolerance capability with possible faulty sen-
sors

The network considered is likely to contain faulty sensor
nodes due to harsh environmental conditions. Faults may
include all types of misbehaviors, ranging from simple sen-
sor crash faults, stuck-at faults, to sensors that behave arbi-
trarily or maliciously. Thus, by assuming that there are µ
misbehaving sensors, we obtain that the new d̄min, defined
as the resultant effective minimum Hamming distance at the
fusion center after considering the faulty sensors, should
satisfy:

dmin ≥ d̄min ≥ dmin − µ.

Therefore, as long as pmax < 1/2 and d̄min approaches in-
finity linearly, the probability of error goes to zero exponen-
tially by directly following the result of Theorem 1.

Similarly, the resultant new δ̄N � d̄min/(2N) should
also satisfy:

δN ≥ δ̄N ≥ δN − νN ,

where νN � µ/(2N). By assuming that νN → ν, we have

δ ≥ lim sup
N

δ̄N ≥ lim inf
N

δ̄N ≥ δ − ν.

Thus, following from Theorem 2, we know that if pmax <
δ − ν, then the probability of DCFECC decision error ap-
proaches zero exponentially as N goes to infinity. There-
fore, (δ−pmax) can be viewed as a sufficient fault-tolerance
capability of the DCFECC code in the sense that under van-
ishing error requirement, the system can tolerate around 2N(δ−
pmax) misbehaving sensors.

4. CONCLUSIONS

In this paper, the performance analysis of the minimum-
Hamming-distance fusion rule, when the number of sensors
becomes arbitrarily large, is investigated. The results show,
based on identical local decision rules, that error probabil-
ity vanishes asymptotically when the Hamming distance of
the DCFECC code approaches infinity, and the probabili-
ties of correct local classification for all the hypotheses are
greater than one half. Furthermore, the probability of er-
ror approaches zero asymptotically as long as the ratio of
the minimum Hamming distance of the employed code and
twice the number of sensors is greater than the largest prob-
ability, of the sensor deciding on the wrong hypothesis given
a particular hypothesis. Moreover, the minimum Hamming
distance of employed code in this fusion rule is shown to
have a relation with the fault-tolerance capability of the sys-
tem.
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