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ABSTRACT

In this paper, we propose a quantizer design algorithm that is opti-
mized for source localization in sensor networks. For these appli-
cations, the goal is to minimize the amount of information that the
sensor nodes have to exchange in order to achieve a certain source
localization accuracy. We show that to achieve this goal requires
the use of “application-specific” quantizers. Our proposed quan-
tizer design algorithm uses a cost function that takes into account
the distance between the actual source position and the position es-
timated based on quantized data. We apply this algorithm to a sys-
tem where an acoustic sensor model is employed for localization.
For this case we introduce the Equally Distance-divided Quantizer
(EDQ), designed so that quantizer partitions correspond to a uni-
form partitioning in terms of distance. Our simulations show the
improved performance of our quantizer over traditional quantizer
designs. They also show that an optimized bit allocation leads to
significant improvements in localization performance with respect
to a bit allocation that uses the same number of bits for each node.

1. INTRODUCTION

In sensor networks, multiple correlated observations are available
from many sensors that can sense, compute and communicate. It
should be noted that these sensors are battery-powered with strict
limitations on wireless communication bandwidth, which moti-
vates the use of data compression in the context of various tasks
such as detection, classification, localization and tracking, which
require data exchange between sensors. The basic strategy for re-
ducing the overall energy usage in the sensor network would then
be to decrease the communication cost at the expense of additional
computation in the sensors [6].

One important sensor collaboration task with broad applica-
tions is source localization. In [1], localization based on acoustic
energy measured at individual sensors is considered, where each
sensor transmits unquantized acoustic energy readings to the cen-
tral node, which then computes an estimate of the location of the
source of these acoustic signals. Clearly, practical systems will
require quantization of these energy readings before transmission
and thus different quantizer designs should be compared in terms
of localization error, defined as the average of the distance between
the actual source location and its estimated value based on received
quantized data.
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Since standard scalar quantizers are focused on minimizing the
average distortion between the actual sensor reading and its quan-
tized value, there is no guarantee that they will be optimal in the
sense of minimizing localization error. Thus, the quantizer design
should be “application-specific”. That is, to design optimal quan-
tizers, a new metric should be defined to maximize the accuracy of
the application objective. For an example of application specific
quantizer design for time-delay estimation see [4]. In the localiza-
tion problem, the metric to minimize is the localization error. A
challenging aspect of this problem is that, while quantization has
to be performed independently at each node, the metric of interest
is based on the localization error, which depends on the readings
from all quantizers. Thus we have a problem where independent
(scalar) quantizers for each node have to be optimized based on a
global (vector) cost function.

To solve this problem, we will propose an iterative design al-
gorithm, similar to that proposed in [3]. Furthermore, based on
the approach from [1], we apply our algorithm to a system where
an acoustic sensor model is considered. We also study the bit al-
location problem (i.e., determining the number of bits to be used
by each sensor) and we provide a solution with the introduction
of the Equally Distance-divided Quantizer (EDQ), which is sim-
ple and provides good performance in the acoustic sensor model
case. Overall, our experiments demonstrate the benefits of using
application-specific designs. The bit allocation results show that
bits should be distributed so as to lead to a partition of the sensor
field that is as uniform as possible. Thus, for example, we will see
that when several nodes are clustered together, the number of bits
per node tends to be lower than when the same sensors are more
spread out.

This paper is organized as follows. The problem formulation
and target cost function are introduced in Section 2. The quan-
tizer design algorithm is proposed in Section 3. In Section 4, we
present an application to the case where an acoustic sensor model
is employed. Section 5 discusses the bit allocation problem. Sim-
ulation results are given in Section 6 and the conclusions are found
in Section 7.

2. PROBLEM FORMULATION

Suppose that there are M nodes in the sensor field S, which mea-
sure signals generated from a source assumed to be static during
the localization process. We assume that the sensor reading at node
i can be modeled by a function f(x, xi,Pi) where x is the source
location, xi is the position of node i, and Pi is the parameter vec-
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tor for the sensor model. It is also assumed that the positions of all
nodes xi, i = 1, ..., M , are known and each node senses its obser-
vation zi(x, k) at time interval k, quantizes it with a given rate Ri,
and sends it to a central node, where all sensor readings are used
to obtain an estimate of the source location x̂. As an example,
zi(x, k) could be the energy of an acoustic signal during the k-th
interval, where each interval has a predetermined duration. We as-
sume that the central node will determine the location of a source
based on zi(x, k)’s obtained from all nodes. In some cases, one
reading per node is used, while in other cases values of zi(x, k)
for several k are needed for localization. Clearly, for zi(x, k) to
be useful for localization, it must be a function of relative positions
of the source and the node:

zi(x, k) = f(x, xi,Pi) + wi(k) ∀i = 1, ..., M, (1)

and thus there exists some function g(.) that can provide an esti-
mate of the source location x̂ based on quantized observations

x̂ = g(α1(z1), ..., αM (zM )), (2)

where αi(.) is the encoder at node i. Obviously, the localization
function g(.) should be closely related to the sensor model f(.).

To design the optimal quantizer at node i, i.e., the one that min-
imizes the localization error, we define a cost function Ji(x) as
follows

Ji(x) = ‖ zi − ẑi ‖2 +λ ‖ x − x̂ ‖2 ∀x ∈ S (3)

Javg = E(Ji(x)) =

∫
S

Ji(x)p(x)dx (4)

where Javg is averaged based on prior knowledge of the proba-
bility density function of the source locations p(x). If no prior
information is available about the likelihood of possible source lo-
cations, p(x) could be made uniform over the sensor field. For the
purpose of training our quantizer we will generate a training set of
observations {z1(x, k), ..., zM (x, k)} based on the sensor model,
f(x, xi,Pi) with a given choice of p(x). Our algorithm is aimed
at finding 2Ri quantizer bins for i-th quantizer so that Javg is min-
imized. The cost function Ji(x) can be rewritten in terms of the M
quantizers

Ji(x, αi(zi)) =‖ zi − βi(αi(zi)) ‖2 +

λ ‖ x − g(α1(z1(x, k)), α2(z2(x, k)), ..., αM (zM (x, k))) ‖2 (5)

where βi(.) is the decoder corresponding to node i.

3. QUANTIZER DESIGN ALGORITHM

Our goal is to design a set of encoders, each operating inde-
pendently on the observations of one node, so as to minimize
the average of the cost function (5), when the entire vector
[α1(.), ...αM (.)] is used for localization. The algorithm should
seek to design independent quantizers for each node, while taking
into account their combined effect on localization. The general-
ized Lloyd algorithm (GLA) is used to design the encoder at each
node. Note that the cost function in (5) is dependent on the en-
coders at other nodes, and thus we will propose an iterative proce-
dure, where the quantizer at node i is optimized while the quantiz-
ers for the other nodes remain unchanged. This iterative method is
based on that proposed in [3].

Note that the quantizer training phase makes use of informa-
tion about all nodes, but when the resulting quantizers are actually

used, each node quantizes the information available to it indepen-
dently (equivalently, the cost function Ji(x) is used for encoding
after setting λ = 0.)

The proposed algorithm is summarized as follows. For simplic-
ity zi(x, k) is written as zi(x).
Step1 : Initialize the encoders αi(.), i = 1, ..., M with the dy-
namic range [zmin zmax]. Set the thresholds ε1 and ε2, set
i = 1, and set iteration indices k = 0 and k1 = 0.
Step2 : Compute the cost function, (5).
Step3 : Compute the quantization regions V j

i

V j
i = {x : Ji(x, αi = Qj

i ) < Ji(x, αi = Qm
i ), ∀m �= j} (6)

where j, m = 1, ..., 2Ri and Qj
i is the j-th quantizer bin of αi(.).

Step4 : Compute the average cost Jk
avg = Ex(Ji(x))

Step5 : If
(Jk−1

avg −Jk
avg)

Jk
avg

< ε1 go to Step 7; otherwise continue

Step6 : k = k + 1. Update the quantization bin Qj
i as follows.

ẑj
i = E(zi(x)|x ∈ V j

i )

Qj
i = [bj−1

i bj
i ] ∀j = 1, ..., 2Ri (7)

where bj
i = 1

2
(ẑj

i + ẑj+1
i ), b0

i = zmin, b2Ri

i = zmax. Go to Step
2
Step7 : if i < M i = i + 1 go to step 2;

else if Dk1−1(x,x̂)−Dk1 (x,x̂)

Dk1 (x,x̂)
< ε2 Stop;

else i = 1; k1 = k1 + 1;Go to Step 2.
where Dk1(x, x̂) = E(‖ x − x̂ ‖2). As discussed above, the
training set is generated based on known values of Pi and p(x). A
discussion of the robustness of our approach to model mismatches
is left for Section 6.

4. APPLICATION TO ACOUSTIC SENSOR MODEL

As an example, we consider source localization based on acoustic
signal energy as proposed in [1], where an energy decay model of
sensor signal readings is used for localization based on unquan-
tized sensor readings. The acoustic sensor model is given by

zi(x, k) = gi
a

(x − xi)α
+ wi(k) (8)

where zi(x, k) is the signal energy measured by node i over a
given time interval, and the parameter vector Pi consists of the
gain factor of ith sensor gi, an energy delay factor α, which is
approximately equal to 2, and the combined noise term wi(k) for
the measurement noise and the modelling error that might exist.
In (8), it is assumed that the signal energy, a, is known and var-
ied over [amin amax], and a source generates a constant energy
during localization. Localization based on quantized observations
is illustrated by Figure 1, where each ring-shaped area can be ob-
tained from one quantized observation provided by a sensor. By
computing the intersection of all the ring areas (one per sensor), it
is possible to define the area where the source is expected to be lo-
cated. Note that at least three observations are required to achieve
a connected intersection. This can be written as follows

A =

M⋂
i=1

Ai Ai = {x : gi
a

(x − xi)α
∈ Qj

i} (9)

where Ai is the ring-shaped region obtained from the quantized
observation ẑi at node i and Qj

i is the quantizer bin that ẑi falls
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Fig. 1. Localization of the source based on quantized energy read-
ings

into. If the source is uniformly distributed in the sensor field, the
estimate, x̂ would be the sample mean in the intersection A

x̂ = E(x|x ∈ A) (10)

To avoid quantizer overload, the dynamic ranges of the M quan-
tizers are initialized as [zmin zmax] = [ amin

r2
max

amax

r2
min

] where

[rmin rmax] is the range within which each sensor is supposed
to measure acoustic source energy. The values of rmax are set
such that the probability that an arbitrary point inside the sensor
field can be sensed simultaneously by at least 3 nodes should be
close to 1 [5]. In this way, the likelihood of missing a source is
minimized. To have finite dynamic ranges, the values of rmin are
chosen as small non-zero values. Note that if more nodes are used,
better quantization in each node is possible (the dynamic ranges
will tend to be smaller). With this initialization step, the quantizer
design as outlined in Section 3 can be used.

5. EQUALLY DISTANCE-DIVIDED QUANTIZER AND
BIT ALLOCATION PROBLEM

Since each set of quantizers induces a partitioning of the sensor
field, designing good quantizers for localization can be seen to be
equivalent to making a good partition of the sensor field by adjust-
ing the width, ∆ri(ri) of the ring-shaped areas in Figure 1. If no
prior information is available about the source location, p(x) can
be assumed to be uniform and thus choosing ∆ri(ri) to achieve a
uniform partitioning of the sensor field would seem to be a good
choice. Intuitively, a uniform partitioning of the sensor field is
more likely to be achieved when the ring-shaped areas have the
same width, ∆ri(ri) = const (this is certainly the case when
the nodes are uniformly distributed). This consideration leads to
the introduction of Equally Distance-divided Quantizers (EDQ),
which can be viewed as uniform quantizers in distance, and such
that ∆ri(ri) = rmax−rmin

2Ri
∀i. To justify the EDQ design, we

performed a simulation (see Figure 2) which shows that EDQ pro-
vides good localization performance, which comes close to that
achievable by our proposed optimal quantizer. EDQ has the added
advantage of facilitating the solution of the bit allocation problem.

Given a total number of bits, RT =
∑

Ri, the goal is to
minimize the localization error by allocating different number of

Fig. 2. Localization error vs. the number of bits, Ri assigned to
each node. The localization error is given by E(‖ x − x̂ ‖2)

bits to each node. Even though the GBFOS algorithm [2] pro-
vides the optimal bit allocation, it would also require extremely
large computational load, since it relies on the calculation of rate-
distortion points at each iteration step, and the quantizers should be
redesigned using the algorithm of Section 3 for each candidate bit
allocation. Instead, in our experiments we use the GBFOS algo-
rithm along with EDQ, which does not require quantizer redesign
for each candidate bit allocation.

6. SIMULATION

The proposed quantizer was designed by the algorithm in Section
3, using a training set with 1532 source locations generated with
a uniform distribution in a sensor field of size 10 × 10m2, where
5 nodes are randomly located (Figure 3). The model parameters
are given by a = 50, α = 2, gi = 1 and SNR = ∞, and the
localization error is computed by E(‖ x − x̂ ‖2). In Figure 2,
the localization error is compared with traditional quantizers such
as uniform quantizers and Lloyd quantizers (λ = 0). Since the
proposed quantizer makes full use of the distributed property of the
observations, it can be seen to provide improved performance over
the traditional quantizers. This can be also explained in terms of
the partitioning of the sensor field, which is plotted in Figure 3 and
4. It is easily seen that the our quantizer leads to a more uniform
partitioning, which in turn reduces the average localization error.
In this simulation, we assume that when the source is very close
to one of the nodes, the node position becomes an estimate of the
source position. The localization error due to this assumption can
be reduced by lowering the value of rmin at the expense of large
dynamic range.

The proposed quantizer was tested to see how it would work
under various types of mismatches. In each test we modify one of
the parameters with respect to what was assumed during training.
The simulation results are tabulated in Table 1. In this experiment,
1481 and 1176 source locations in the sensor field 10 × 10, were
generated with assumption of uniform distribution and normal dis-
tribution, respectively. Localization is performed using the true pa-
rameters, even when there is mismatch. The proposed quantizers
showed good performance for the various parameter perturbations.
That is, there is no need to redesign quantizers when there are tol-
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Fig. 3. Partitioning of Sensor field(10×10m2)(grid= 0.25×0.25)
by proposed quantizers. All partitioned regions are numbered, so
that a region is filled with the same number (Ri = 2)

Fig. 4. Partitioning of Sensor field(10×10m2)(grid= 0.25×0.25)
by Lloyd quantizer. All partitioned regions are numbered (Ri = 2)

erable parameter mismatches. In a large sensor field, they also
provided good results with respect to traditional quantizers.

In the same node configuration as in Figure 3, the bit allocation
was conducted using EDQ to search for the optimal bit allocation
R∗, that would give the minimum localization error. It can be seen
that nodes 3 and 5 are so close to each other that they provide re-
dundant information for localization and thus the optimal solution
allocates few bits to both these nodes. In fact, in our example, at
relatively low rates (an average of 2 bits per node) it is more effi-
cient to send information from only three nodes (node 1,2 and 4),
i.e., allocating zeros bits for the other two nodes (node 3 and 5). In
Table 2, the localization errors are compared for several different
bit allocations, showing that bit allocation is important to achieve
good localization performance.

7. CONCLUSION

In this paper, we have presented a quantizer design algorithm for
source localization in sensor networks. We have also discussed
the bit allocation problem and introduced a simple quantizer that
shows good performance when acoustic sensor models are em-

Source energy a 40 45 50 55 60
LE(normal) 0.0657 0.0706 0.0788 0.0982 0.1196
LE(uniform) 0.0710 0.0615 0.0727 0.0779 0.0946

Delay factor α 1.6 1.8 1 2.2 2.4
LE(normal) 0.1676 0.1247 0.0788 0.0467 0.0557
LE(uniform) 0.3070 0.1206 0.0727 0.0786 0.6941

Gain factor gi 0.6 0.8 1 1.2 1.4
LE(normal) 0.0466 0.0657 0.0788 0.1196 0.1731
LE(uniform) 0.0713 0.0710 0.0727 0.0946 0.1326

SNR(dB) 20 40 60 80 100
LE(normal) 1.4700 0.1674 0.0822 0.0796 0.0788
LE(uniform) 2.3811 0.1235 0.0831 0.0738 0.0727

Table 1. Localization error(LE)(m2) of the proposed quantizers
under various mismatches. Localization error(LE) is given by E(‖
x− x̂ ‖2). LE(normal) is for normal distribution and LE(uniform)
for uniform distribution. The proposed quantizers are designed
with Ri = 3, a = 50, α = 2, gi = 1 and SNR = ∞ for uniform
distribution.

Sets of bit allocations EDQ Proposed Quantizer
R∗ = [4 3 0 3 0] 0.1533 0.1105
R = [3 4 0 3 0] 0.1543 0.1227
R = [3 2 2 3 0] 0.3005 0.2014
R = [2 2 2 2 2] 0.6199 0.3975

Table 2. Localization error(m2) for various sets of bit allocations
where R∗ was obtained by GBFOS using EDQ given RT = 10.

ployed. In our experiments, based on the acoustic sensor model,
our approach outperforms traditional quantizers and provides good
results under various types of mismatches. In the future, we will
work on the case where the source signal energy is unknown. For
this case, a new localization algorithm should be developed.
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