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ABSTRACT
Multimodal wireless networks are wireless networks that
offer multiple functionalities realized on the same infras-
tructure. In this paper, we consider a multimodal network
that has two modes of operation: the communication mode,
when the network is used as a traditional wireless commu-
nication network, and the surveillance mode, when the net-
work is used as a distributed sensor network that can detect
illegal intrusion by detecting changes in the propagation en-
vironment caused by the intruder. We address the problem
of distributed surveillance in a network consisting of multi-
ple nodes: we develop a multi-sensor model for the received
signal parameters of interest and derive a detector capable
of detecting changes in these parameters. The experimen-
tal results demonstrate that combining the information from
different nodes with the appropriate fusion function results
in considerably improved detection performance compared
to that of single-node detectors.

1. INTRODUCTION

In the past few years, wireless networks have become wide-
spread, and they are gaining popularity day by day. Wire-
less devices, such as wireless-enabled laptops and palm pi-
lots, have become an integral part of our daily lives. In
the near future, wireless networks will be ubiquitous, of-
fering high-speed communication capabilities almost every-
where. Thus, the question arises naturally: is it possible to
use the wireless network infrastructure to implement other
functionalities in addition to communication?

The answer is given by recognizing that a wireless net-
work can be considered as a sensor network, where the net-
work nodes also function as sensors. They sense changes in
the propagation environment due to moving objects or hu-
mans, so a possible additional functionality could be indoor
surveillance of corporate buildings and private houses. So
far, the problems of wireless communication and ”physical”
intrusion detection (i.e. detecting a person or persons enter-
ing private/corporate premises illegally) have been consid-
ered as two separate issues, and two different infrastructures
have been deployed: one for communication and one for
surveillance/security. However, if the communication in-
frastructure could also be used for security purposes, the de-
ployment of the additional infrastructure could be avoided
or reduced, resulting in a considerably more cost-effective
solution.

Previous experiments investigating the impact of mov-
ing objects/humans on the propagation environment [1], [2]

have shown that significant variations can be observed in
the received signal strength and the rms delay spread. How-
ever, those measurements were carried out using specialized
equipment, and not low-cost, off-the-shelf devices, such as
a WLAN card, and the authors did not propose any signal
processing architectures or algorithms for intrusion detec-
tion.

In [3], we proposed the idea of multimodal wireless net-
works: networks that can offer multiple functionalities re-
alized on the same infrastructure. The multimodal wireless
networks have two modes of operation: the communication
mode, when the network is used as a traditional WLAN or
WPAN, and the surveillance mode, when the communica-
tion network is used as a distributed sensor network that can
detect illegal intrusion. We also described a single-receiver
(or single-sensor) model for the received signal parameter
of interest (e.g. time of arrival or signal strength) and de-
rived a detector for detecting change in that parameter.

In this paper, we consider the problem of distributed
surveillance with multiple wireless network nodes. We de-
velop a multi-sensor model for the received signal param-
eters, taking into account their quantized nature and inac-
curacy due to signal measurement values that are not cali-
brated or not standardized. Moreover, we derive a parame-
ter change detector based on the generalized likelihood ratio
test (GLRT) for a multiple transmitter/multiple receiver sce-
nario. The novelty of this work compared to [3] lies in the
generalization of the detector for the multi-sensor case, the
derivation of methods for the joint estimation of multiple
parameters for each node, and the solution to the informa-
tion fusion problem, which comes naturally from the multi-
sensor GLRT formulation.

The architecture of the surveillance system is shown in
Figure 1. In communication mode, the wireless transceiver
nodes (e.g. access points, or nodes in an ad-hoc network)
implement the functionality of a traditional wireless net-
work. In surveillance mode, the nodes transmit, for exam-
ple, one by one in a round robin fashion, and the rest of the
nodes receive the transmitted signal. First, the received sig-
nal at each node is processed by a preprocessor to extract
the relevant characteristics of the propagation environment,
called features, which may include time of arrival, angle
of arrival, the strength of the received signal, channel im-
pulse response, or a combination of these. The obtained set
of such features is then combined by an information fusion
function, which produces a single output that is used to de-
cide whether an intruder is present in the system or not.
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Fig. 1. The architecture of the surveillance system

2. SIGNAL MODEL AND PROBLEM SETUP

Consider a wireless network consisting of N nodes. During
scanning period m (1 ≤ m ≤ N ), only node m transmits
T times, and the rest of the nodes receive the transmitted
signal. The model of the received signal parameter of in-
terest at node n (1 ≤ n ≤ N , n �= m) at discrete time
t (1 ≤ t ≤ T ) of scanning period m can be observed in
Figure 2. The true value of the received signal parameter,
l0m,n, is shifted by an unknown bias, Bm,n, resulting in the
biased parameter, lm,n, which is assumed to take on val-
ues between lMIN and lMAX . The bias represents mea-
surement inaccuracy due to transmitted and received sig-
nal features that are not calibrated and/or not standardized,
such as the 802.11 transmit power and RSSI value calcu-
lation. Note that due to the bias, in general, lm,n �= ln,m,
even if the channel is reciprocal. The true signal param-
eter is further disturbed with zero-mean, white Gaussian
noise zm,n(t) with variance σ2

n at discrete time t. The ob-
served values are usually only available in quantized form
(for example, 802.11 RSSI values), so the observations are
{ym,n(t)}, the quantizer indices corresponding to the noisy
and biased signal parameter values {xm,n(t)}. The quan-
tizer is assumed to have Nq = 2b levels, where b is the num-
ber of bits representing the signal parameter. The decision
regions are denoted by a(0) < a(1) < ... < a(Nq), with
a(0) = −∞ and a(Nq) = +∞, and the quantizer maps the
input value x to the quantizer index y ∈ {0, 1, ..., Nq − 1}
if a(y) < x ≤ a(y + 1).

Our objective is to detect changes ∆lm,n with respect to
the true signal parameters l0m,n given the observation vector
y = {ym,n(t)}. The two detection hypotheses can be for-
mulated as follows: H0 : no change detected (no intruder
present), and H1 : change detected (intruder present). Since
the detection of change is not affected by the bias Bm,n, the
true values of the signal parameters are not needed for our
purposes, and we can equivalently base our decision on the
biased parameters lm,n.

The detection procedure will consist of the following
two phases: the training phase and the detection phase. Dur-
ing the training phase, the steady state of the propagation
environment is estimated. The signal (and noise) parameters
lm,n and σn are not known, so they must be estimated when
it is ensured that H0 is true (i.e. no intruder). The quanti-
ties lm,n and σn are obtained by developing an approximate
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Fig. 2. The received signal model

and an iterative maximum likelihood (ML) estimator using
a larger number (T = 1000) of training samples.This can
be done during a couple of seconds when the surveillance
system is armed. Note that this step is necessary since the
propagation environment may change significantly during
an inactive period of the surveillance system. For example,
workers at a company may move furniture or leave doors
open or closed during daytime.

The second phase is the detection phase, when the surveil-
lance system detects the changes ∆lm,n in the parameters
lm,n based on a small number (T = 50) of observations.
Since the probability of detection must be maximized for a
given probability of false alarm, the detection problem will
be formulated as a GLRT. Again, the values of ∆lm,n for
the H1 case are estimated by an approximate and an itera-
tive ML estimator.

3. TRAINING PHASE

Given an observation vector y (now T represents the train-
ing data record length), we would like to estimate the values
lm,n and σn. The log-likelihood function of the parameters
l = {lm,n} and σ = {σn} is given by

ln P (y = i; l, σ)=

N∑
n=1

N∑
m=1
m �=n

T∑
t=1

ln G(lm,n, σn, a−
m,n(t), a+

m,n(t)),

(1)
where i = {im,n(t)} is an observed realization of the ran-
dom vector y, a−

m,n(t) = a(im,n(t)), a+
m,n(t) = a(im,n(t)+

1), and the function G(.) is defined as

G(l, σ, α, β) =
1√
2πσ

∫ β

α

e
− (ν−l)2

2σ2 dν = Q

(
α − l

σ

)
−Q

(
β − l

σ

)
.

The ML estimate of the parameters for node n can be ob-
tained by finding the values lm,n, 1≤m ≤ N , m �= n, and
σn such that ∂

∂lm,n
lnP (y = i; l, σ) = 0 and ∂

∂σn
lnP (y =

i; l, σ) = 0, yielding the conditions

f1(lm,n, σn) =
T∑

t=1

X(lm,n,σn,a−
m,n(t)) −X(lm,n,σn,a+

m,n(t))

G(lm,n,σn,a−
m,n(t),a+

m,n(t))
= 0

f2(ln, σn) =
N∑

m=1
m�=n

T∑
t=1

ψ(lm,n, σn, a−
m,n(t), a+

m,n(t)) = 0,

where X(l, σ, α) = exp(−(α − l)2/2σ2), the vector ln is
given by ln = [ l1,n, l2,n, ..., ln−1,n, ln+1,n, ..., lN,n ]T , and

ψ(l, σ, α, β) = (α−l)X(l,σ,α)−(β−l)X(l,σ,β)
G(l,σ,α,β) .

The solution cannot be obtained in closed form, so we de-
rive an approximate ML estimator and an iterative ML esti-
mator.
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The approximate ML estimator is obtained by approxi-
mating the integral of G(.) as

∫ β

α
f(x)dx ≈ f(α+β

2 )(β −
α). As a result, the approximate log-likelihood function be-
comes

ln P (y = i; l, σ) ≈
N∑

n=1

N∑
m=1
m �=n

T∑
t=1

− ln(
√

2πσn)

− 1
2σ2

n

(
a−

m,n(t)+ a+
m,n(t)

2
− lm,n

)2

+ ln(a+
m,n(t) − a−

m,n(t)).(2)

By taking its partial derivative with respect to lm,n, setting
it equal to zero and solving for lm,n yields the estimator

l̂m,n =
1

T

T∑
t=1

a−
m,n(t) + a+

m,n(t)

2
, (3)

which is the sample mean of the quantized observations for
uniform quantizers. Similar, taking the partial derivative
with respect to σ2

n, setting it to zero, solving for σ2
n and

using l̂m,n for the value of lm,n gives the estimator

σ̂2
n =

1

(N − 1)T

N∑
m=1
m�=n

T∑
t=1

(
a−

m,n(t) + a+
m,n(t)

2
− l̂m,n

)2

.

(4)
When using (3) and (4), the values of a(0) and a(Nq) need
to be replaced with appropriate finite values.

The iterative ML estimator performs a series of Newton-
Raphson iterations using the estimates from the approxi-
mate ML estimator as initial values. Let us define the es-
timated signal parameter vector for node n at the k-th itera-
tion as l̂(k)

n = [ l̂(k)
1,n, ..., l̂

(k)
n−1,n, l̂

(k)
n+1,n, ..., l̂

(k)
N,n ]T , and let the

solution vector for the k-th iteration be s(k)
n = [̂l(k)T

n , σ̂
(k)
n ]T .

Then, the solution for the next iteration, s(k+1)
n , can be ob-

tained by solving

D(k)
n (s(k)

n − s(k+1)
n ) = f (k)

n , (5)

where

D(k)
n =

[
diag(d(k)

1,n, ..., d
(k)
n−1,n, d

(k)
n+1,n, ..., d

(k)
N,n) c(k)

n

b(k)T
n w

(k)
n

]
,

f (k)
n = [ f1(l̂

(k)
1,n, σ̂

(k)
n ), ..., f1(l̂

(k)
n−1,n, σ̂

(k)
n ), ...

f1(l̂
(k)
n+1,n, σ̂

(k)
n ), ..., f1(l̂

(k)
N,n, σ̂

(k)
n ), f2(̂l

(k)
n , σ̂

(k)
n ) ]T ,

and the diagonal entries {d(k)
m,n}, the coordinates of the vec-

tor b(k)
n = [ b(k)

1,n, ..., b
(k)
n−1,n, b

(k)
n+1,n, ..., b

(k)
N,n ]T , the coordi-

nates of the vector c(k)
n = [c(k)

1,n, ..., c
(k)
n−1,n, c

(k)
n+1,n, ..., c

(k)
N,n]T

and w
(k)
n are given by

d
(k)
m,n = ∂f1(lm,n,σn)

∂lm,n

∣∣∣
lm,n=l̂

(k)
m,n,σn=σ̂

(k)
n

,

b
(k)
m,n = ∂f2(ln,σn)

∂lm,n

∣∣∣
ln=l̂

(k)
n ,σn=σ̂

(k)
n

,

c
(k)
m,n = ∂f1(lm,n,σn)

∂σn

∣∣∣
lm,n=l̂

(k)
m,n,σn=σ̂

(k)
n

,

w
(k)
n = ∂f2(ln,σn)

∂σn

∣∣∣
ln=l̂

(k)
n ,σn=σ̂

(k)
n

.

These derivatives can be obtained in closed form after some
tedious, but straightforward calculations, and they are omit-
ted here for brevity. The iterations stop if two consecutive
solution vectors are closer to each other than a predefined
threshold value δ.

4. DETECTION PHASE

In the detection phase, the detector observes a quantizer in-
dex vector y (now the observation period T is consider-
ably smaller than that for the training phase), and decides
whether there is a significant change in the signal parame-
ters lm,n (H1) or not (H0). The detection algorithm is based
on the GLRT: decide H1 if

P (y = i;H1)

P (y = i;H0)
> γ, (6)

and γ is the decision threshold. For both hypotheses, the
previously estimated lm,n and σn values are used. In addi-
tion, for the hypothesis H1, the values of ∆lm,n also have
to be estimated, while for H0, ∆lm,n = 0 is assumed. The
values of ∆lm,n under H1 can be estimated similarly to the
method described in Section 3, yielding an approximate and
an iterative ML estimator.

By taking the logarithm of (6) and using the estimates
of ∆lm,n for H1, the GLRT becomes: decide H1 if

N∑
n=1

gn > γ′ = ln γ, (7)

and gn is given by

gn =
N∑

m=1
m �=n

T∑
t=1

ln G(∆̂lm,n, σ̂n, a−
m,n(t) − l̂m,n, a+

m,n(t) − l̂m,n)

− ln G(0, σ̂n, a−
m,n(t) − l̂m,n, a+

m,n(t) − l̂m,n).

Comparing the architecture of Figure 1 with (7), the sys-
tem operation in the detection phase can be summarized as
follows. During N consecutive scanning periods, the pre-
processing stage of node n computes the feature gn from
its observations, independently of the other nodes (but in
coordination with them). Then, these features are sent to
the fusion center that performs the feature-in-decision-out
information fusion by a simple summation and threshold
comparison.

5. EXPERIMENTAL RESULTS

To illustrate the performance of the change detector, we per-
formed some computer simulations and some experiments.
The observations were the RSSI values provided by 802.11b
ZyAIR B-100 WLAN cards, and the signal parameters lm,n

were the received signal strength values. We used a uniform
quantizer matched to the properties of the WLAN card: it
had Nq = 128 levels with lMAX = 0.5 dB and lMIN =
−127.5 dB, and the decision regions were a(i) = lMIN +
i∆, i = 1, 2, ..., Nq − 1, with ∆ = (lMAX − lMIN )/Nq =
1. For the approximate ML estimators, the values a(0) =
lMIN and a(Nq) = lMAX were used, and for the itera-
tive ML estimators, the convergence threshold was set to
δ = 0.05.
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Fig. 3. The performance of the estimator

We investigated the performance of the approximate and
the iterative ML estimators via computer simulations. We
considered a 3-node system with the parameters: l1,2 =
−32.42 dB, l1,3 = −50.11 dB, l2,1 = −32.83 dB, l2,3 =
−41.76 dB, l3,1 = −49.88 dB, l3,2 = −41.91 dB, σ2

1 =
0.5, σ2

2 = 0.4, σ2
3 = 0.7. The results are shown in Figure 3:

the upper part of the figure depicts the average mean squared
error (MSE) for the signal parameters {lm,n} as a function
of the training data record length, while the lower part de-
picts the average MSE for the noise parameters {σn}. From
the figures, it can be seen that in case of the signal parame-
ters, both estimators have the same performance. However,
in case of the noise parameters, the iterative estimator yields
better estimates at longer data record lengths: at T = 1000,
its accuracy is more than one order of magnitude better than
that of the approximate ML estimator. If the data record
length is very small, the initial values provided by the ap-
proximate estimator tend to be further away from the global
optimum point, so the iterative estimator will converge to a
local optimum point, resulting in worse performance. How-
ever, if the data record length is long enough, the iterative
method is able to find the global optimum point more often,
improving its performance compared to the approximate es-
timator.

The performance of the detector was evaluated by per-
forming a set of experiments using three laptops with 802.11b
WLAN cards as network nodes. One laptop was configured
to send beacon frames in every 5 ms, and the two others
captured those frames in monitor mode and recorded the re-
ceived RSSI values. The laptops were separated by several
room walls made of plaster, and a wooden door between the
transmitter node and the receiver nodes was closed and half-
opened (45◦). The decision hypotheses were: H0: the door
is closed, and H1: the door is not closed. For the training
phase, T = 1000 samples were used to estimate {lm,n} and
{σn} with the iterative ML estimator when the door was
closed. Then, blocks of T = 50 samples were used to de-
tect the signal parameter changes {∆lm,n} with the approx-
imate ML estimator. To calculate the average probability
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Fig. 4. The performance of the detector

of false alarm, 80000 blocks of RSSI values were recorded
with closed door. To calculate the average probability of
detection, 16000 blocks of RSSI values were recorded with
half-open door. The detection procedure was carried out
using data from only the first receiver node (Node 1), from
only the second receiver node (Node 2) and from both nodes
(Nodes 1 and 2) with the proposed algorithm. The resulting
detector performance curves can be observed in Figure 4.
As can be seen, by increasing the number of nodes, the de-
tection performance can be significantly improved. In case
of single-node detection, it is possible to achieve a certain
performance, but combining the information coming from
different nodes with the appropriate fusion function will re-
sult in higher probability of detection at any given probabil-
ity of false alarm.

6. CONCLUSIONS

We considered the problem of using multi-node wireless
networks for distributed surveillance, adding another func-
tionality to the standard communication functionality of such
networks. The surveillance functionality is implemented by
using a wireless communication network as a wireless sen-
sor network. We developed a multi-sensor model for the re-
ceived signal parameters of interest, and devised distributed
estimation, information fusion and detection algorithms to
implement the surveillance functionality.
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