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ABSTRACT

The maximum a posteriori penalty function (MAP-PF) approach is
applied to target position tracking with a network of sensor arrays.
The track estimation problem is formulated directly from the array
data as using the MAP estimation criterion. The penalty function
method of nonlinear programming is used to obtain a tractable so-
lution. A sequential update procedure is developed in which pe-
nalized maximum likelihood estimates of target bearing and power
are computed for each array, and then used as synthetic measure-
ments in an extended Kalman filter. The two steps are coupled via
the penalty function. The current target state is used to guide the
bearing estimation, and estimated signal powers control the influ-
ence of the bearing estimates from each array on the final track
estimate. The algorithm can be implemented in a decentralized
manner where bearing estimation is performed at the arrays, and
track estimation is performed at a central processing site.

1. INTRODUCTION

Traditional position tracking techniques partition the track estima-
tion operation into two isolated processes: bearing-only estimation
at each array, followed by position track estimation from the bear-
ing estimates. In this paper, we consider estimation of the target
state directly from the data at all of the arrays using the maxi-
mum a posteriori (MAP) criterion. This approach is based on the
MAP penalty function (MAP-PF) tracking technique developed
for tracking the bearings of multiple targets at a single array in [1].
A key feature of the approach is the use of the penalty function
method of nonlinear programming to obtain a tractable solution.
A sequential track state update procedure similar to the extended
Kalman filter (EKF) is developed which updates the state first from
the motion model, and then from the current array data. Penalized
maximum likelihood estimates of the source bearing and power
are computed for each array, which then act as a synthetic “mea-
surements” in an EKF update of the state. The two-step estimation
process is similar to traditional methods, except the processes are
coupled via the penalty function. In the bearing estimation step,
the current target state is used to guide the estimation process and

This research was sponsored by the U.S. Army Research Laboratory
and was accomplished under Cooperative Agreement Number DAAD19-
02-2-0004. The views and conclusions contained in this document are
those of the author and should not be interpreted as presenting the official
policies, either expressed or implied, of the Army Research Laboratory or
the U.S. Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation hereon.

help eliminate ambiguous or spurious estimates. In the track esti-
mation step, estimated signal powers control the influence of the
bearing estimates from each array on the final track estimate. The
algorithm can be implemented in a decentralized manner where
bearing estimation is performed at the arrays, and track estimation
is performed at a central processing site.

2. STATISTICAL MODEL AND ASSUMPTIONS

The model consists of a moving target radiating a narrowband sig-
nal that is received by a network of Q sensor arrays, each with
Nq elements. The target and the arrays are assumed to lie in the
xy-plane. Let (xk, yk) denote the target’s position at time k and
(ẋk, ẏk) denote its velocity. The four-dimensional target state at
time k is xk = [xk ẋk yk ẏk]T . We assume the motion of the
objects is described by a first order Gauss-Markov process, i.e.,

xk = Fxk−1 + wk, (1)

where F is the state transition matrix and wk is a zero mean white
Gaussian noise process with covariance matrix Q which is as-
sumed known and fixed over the observation period. Under these
assumptions, the probability density function (pdf) of xk given
xk−1 is

p(xk|xk−1) =

exp
{− 1

2
(xk − Fxk−1)

T Q−1(xk − Fxk−1)
}

|2πQ| 12
, (2)

where |Q| denotes the determinant of Q. There are K snapshots in
an observation batch. No data is available at k = 0 so we assume
the prior distribution on initial object states, p(x0), is Gaussian
with mean x̄0 and covariance Ω0.

Let (dx
qn, dy

qn) denote the position of the nth element of the
qth array; n = 1, . . . , Nq and q = 1, . . . Q. The element positions
can also be described relative to a reference position for each ar-
ray. Let (dx

q , dy
q ) denote the reference position of the qth array and

(∆x
qn, ∆y

qn) denote the location of the nth element with respect to
the reference position. Then (dx

qn, dy
qn) = (dx

q +∆x
qn, dy

q +∆y
qn).

The target range rqk is the distance between the target and the ref-
erence position of the array,

rqk =

√(
xk − dx

q

)2
+ (yk − dy

q )2, (3)

and the target bearing φqk is the angle between the target and the
reference position of the array,

φqk = arctan

(
yk − dy

q

xk − dx
q

)
. (4)
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We define the nonlinear function

hq(xk) ≡ φqk = arctan

(
yk − dy

q

xk − dx
q

)
(5)

to express the bearing as a function of the target state, and theQ×1
vector

h(xk) = [h1(xk) h2(xk) · · · hQ(xk)]T (6)

to represent the collection of target bearings across all arrays.
The signals received at the elements of a particular array are

modelled as coherent, time-shifted versions of the same signal, but
the signals received at different arrays are modelled as different,
uncorrelated signals. The signals and noise are assumed to be sam-
ple functions of stationary zero-mean Gaussian random processes.
At the qth array, the Nq × 1 observed data vector during the kth
observation snapshot has the form

zqk = sqkvq(hq(xk)) + nqk, (7)

where sqk is a random signal sample from the target at the kth
snapshot with E[sqks∗qk] = γqk. The vector vq(hq(xk)) is the
Nq × 1 array response vector to a target whose state is xk. We
use this notation to emphasize that when the array element spac-
ings are small relative to the separation between the source and the
array, the Nq ×1 array response vector depends on the target posi-
tion only through the bearing hq(xk). The vector nqk is an Nq ×1
vector of uncorrelated sensor noise samples at the kth snapshot. It
is assumed that the snapshots are sufficiently spaced that the ob-
servations are independent from snapshot to snapshot. The signal
powers, γqk, are assumed to be time-varying and unknown. The
noise covariance matrix is assumed to be constant and known with
E[nqkn

H
qk] = σ2

qI.
At a particular array and snapshot, the array data zqk is then

jointly complex Gaussian with zero mean and covariance matrix

Kqk(xk, γqkl) = γqkvq(hq(xk))vq(hq(xk))H + σ2
qI, (8)

and the pdf of the data vector conditioned on the target state is
given by

p(zqk|xk; γqk) =
exp

{
−zH

qkK
−1
qk (xk, γqk)zqk

}
|πKqk(xk, γqk)| . (9)

We have used the notation p(zqk|xk; γqk) to indicate that the pdf
is conditioned on the random vector xk but is also a function of
the non-random but unknown parameter γqk.

We denote the collection of target powers over all arrays at
time k as γk ≡ {γ1k, γ2k, . . . , γQk} and the collection of data
vectors across arrays as zk ≡ {z1k, z2k, . . . , zQk}. At each snap-
shot, the joint pdf of the data conditioned on the target state is the
product of the pdfs for each array and is given by:

p(zk|xk; γk) =

Q∏
q=1

p(zqk|xk; γqk). (10)

The single snapshot joint pdf of the observations and target
state conditioned on the previous target state is then

p(zk,xk|xk−1; γk) = p(zk|xk; γk)p(xk|xk−1). (11)

Let X, Γ, and Z denote the collections X ≡ {x1,x2, . . . ,xK},
Γ ≡ {γ1, γ2, . . . , γK}, and Z ≡ {z1, . . . , zK}. The joint pdf of
the array snapshot data and target states over the batch is given by

p(Z,X;Γ) = p(x0)

K∏
k=1

p(zk|xk; γk)p(xk|xk−1). (12)

3. MAP TRACKING ALGORITHM

We wish to estimate the random variable X (the target track) from
the observations Z. Two optimization criteria commonly used
in Bayesian estimation problems are minimum mean square er-
ror (MMSE) and maximum a posteriori probability (MAP). The
MMSE estimate is the mean of the a posteriori pdf p(X|Z) while
the MAP estimate is found at the peak of p(X|Z), or equivalently
at the peak of the joint pdf p(Z,X). In many cases, these two esti-
mates coincide [2]. In the classical single target tracking problem
where the observations are a linear function of the target states and
the observations and states are Gaussian, the discrete time Kalman
filter provides both the MMSE and MAP estimates of the target
states given the observations [3]. In the problem considered here,
the observations depend on the target states in a nonlinear man-
ner, therefore the MMSE and MAP estimates will not coincide.
We also have the added complication of the unknown nuisance
parameter vector Γ. The MAP methodology provides a tractable
framework for solving this problem. We can jointly find the MAP
estimate of X and the maximum likelihood (ML) estimate of Γ by
maximizing the joint pdf p(Z,X;Γ), or equivalently its logarithm,
with respect to both X and Γ.

The MAP/ML estimates of X and Γ are the solutions to the
optimization problem:

max
X,Γ

ln

[
p(x0)

K∏
k=1

p(zk|xk; γk)p(xk|xk−1)

]
. (13)

We note that the pdf p(zk|xk; γk) depends on the target state xk

through the vector of bearings h(xk). Following [1], we intro-
duce a set of KQ auxiliary variables µqk for q = 1, . . . ,Q and
k = 1, . . . ,K to assist in the solution. Let the Q × 1 vector
µk = [µ1k µ2k · · · µQk]T represent the collection of these vari-
ables across all arrays and define the collection of these vectors
over snapshots as M ≡ {µ1, µ2, . . . , µK}. We replace the bear-
ing vector h(xk) with the new auxiliary variable vector µk in the
p(zk|xk; γk) term. In order to retain the original optimization
problem, we then require the new variables to be equal to the old
variables, i.e. µk = h(xk). The unconstrained optimization prob-
lem in (13) can be written as an equivalent constrained optimiza-
tion problem as follows:

max
X,M,Γ

ln

[
p(x0)

K∏
k=1

p(zk; µk, γk)p(xk|xk−1)

]
(14)

s.t. µk = h(xk), k = 1, . . . ,K,

where p(zk; µk, γk) ≡ p(zk|xk; γk)|h(xk)=µk
.

This formulation allows us to use the penalty method of non-
linear programming [4] for constrained optimization problems. It
is an iterative procedure in which a sequence of easier uncon-
strained optimization problems is solved. The easier problems are
related to the original constrained problem by a continuous, dif-
ferentiable penalty function which is equal to zero in the feasible
region where the constraints are satisfied, and which is negative
in the infeasible region. The penalty function relaxes the equal-
ity constraint resulting in a problem which is an approximation
to the original problem. With each iteration, a stronger penalty
is imposed for infeasibility, and the solution to the unconstrained
problem converges to the solution to the original constrained prob-
lem. An overview of the method and the convergence properties is
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provided in [1]. As in [1], we use the quadratic penalty function,

P (X,M) = −
K∑

k=1

Q∑
q=1

(µqk − hq(xk))2

2ξqk
(15)

= −1

2

K∑
k=1

(µk − h(xk))T R−1
k (µk − h(xk)),

where Rk = diag ([ξ1k ξ2k · · · ξQk]), and ξqk are parameters
that affect the strength of the penalty.

To enforce a more costly penalty at each iteration, a term (ri)
−1

scales the penalty function, where i is the iteration index and ri, i =
1, 2, . . . is a positive, decreasing sequence converging to zero. The
penalized unconstrained maximization problem at the ith iteration
is given by

max
X,M,Γ

ln

[
p(x0)

K∏
k=1

p(zk; µk, γk)p(xk|xk−1)

]

− 1

2ri

K∑
k=1

(µk − h(xk))T R−1
k (µk − h(xk)). (16)

Expanding and rearranging the terms in (16), we have

max
X,M,Γ

K∑
k=1

ln p(zk; µk, γk)

+

(
ln p(x0) +

K∑
k=1

ln p(xk|xk−1)

)
(17)

−1

2

K∑
k=1

(µk − h(xk))T (riRk)−1 (µk − h(xk)).

Note that the first term is only a function of Z, M and Γ, the
second term is only a function of X, and the third term provides
the coupling between the parameter sets M and X.

First consider that for a fixed M and Γ, we can find an esti-
mate of X by maximizing over the second and third terms in (17).
Expanding the pdfs, the problem becomes

max
X

−(x0 − x̄0)
T Σ−1

0 (x0 − x̄0)

−
K∑

k=1

(xk − Fxk−1)
T Q−1(xk − Fxk−1) (18)

−
K∑

k=1

(µk − h(xk))T (riRk)−1 (µk − h(xk)).

This problem has the form of the classical single source tracking
problem with µk acting as the noisy measurement vector, which
has a Gaussian distribution with mean h(xk) and covariance ma-
trix riRk. The extended Kalman filter (EKF) provides a sequen-
tial update algorithm similar to the standard Kalman filer by using
a linear approximation to h(xk) [3].

Next consider that for a fixed X, we can solve for both M
and Γ by maximizing over the first and third terms in (17). These
terms decouple with respect to the snapshots and arrays, therefore
this problem reduces to solving KQ separate single source bearing
estimation problems of the form

max
µqk, γqk

ln p(zqk; µqk, γqk) − (µqk − hq(xk))2

2riξqk
. (19)

This is a penalized maximum likelihood (PML) estimation prob-
lem in which the bearing estimate is found from a one-dimensional
search over bearing space and the power estimate has a closed form
expression as a function of bearing.

We then alternate between finding the bearing and power es-
timates using the PML algorithm, and the track estimate via the
EKF. As presented above, there are two levels of iteration: the
penalty method iteration in which the penalty parameter ri forces
the solution into the feasible region and the alternating maximiza-
tion iteration between bearing/power estimation and track estima-
tion. Each of the iterations may be performed until a convergence
criterion is satisfied or for a fixed number of cycles. The trade-off
is algorithm complexity versus estimation accuracy.

The MAP-PF algorithm described above is a batch algorithm
that provides an elegant solution to the problem of target tracking
with a network of sensor arrays. However, in real applications we
often cannot wait while a batch of data is collected and processed,
and we would like a sequential solution in which state estimates
are computed each time a data snapshot is received. A slight mod-
ification to the batch algorithm can be made which allows for a
fully sequential implementation. First, the alternating maximiza-
tion iteration between bearing/power estimation and track state es-
timation as well as the penalty method iteration are both reduced
to one step. The penalty parameter r1 is set to one and the terms
ξqk must be chosen carefully to strongly enforce the penalty as
well as to act as the measurement error variance in the tracking
stage. We set ξqk to be inversely proportional to the target’s esti-
mated power, i.e. ξqk = β/γ̂qk, where β is a tuning parameter that
must specified. Next, in (19), we replace ξqk with ξq,k−1 and xk

with the predicted state x̂k|k−1 from the extended Kalman filter.
An explicit pseudo-code description of the sequential algorithm is
provided in Table 1.

Table 1. Sequential MAP-PF tracking algorithm pseudo code.

Initialize x̂0 ≡ x̄0,P0|0 ≡ Ω0,R0, β
for k = 1, . . . ,K

Predict current state
x̂k|k−1 =Fx̂k−1

Hk =
∂h(x)

∂xT

∣∣∣∣
x=x̂k|k−1

Bearing and Power estimates
for q = 1, . . . ,Q

µ̂qk =

argmax
µ

ηqk(µ) + ln ηqk(µ) − (µ − hq(x̂k|k−1))
2

2ξq,k−1

where ηqk(µ) = max

[
1,

∣∣∣zH
qkvq(µ)

∣∣∣2 / |vq(µ)|2 σ2
q

]
γ̂qk = (ηqk(µ̂qk) − 1) σ2

q/ |vql(µ̂qk)|2
ξqk = β/γ̂qk

end {q}
µk = [µ1k · · · µQk]T

Rk = diag ([ξ1k ξ2k · · · ξQk])
EKF State Update

Pk|k−1 = FPk−1|k−1F
T + Q

Gk = Pk|k−1H
T
k

{
HkPk|k−1Hk

T + Rk

}−1

Pk|k = Pk|k−1 − GkHkPk|k−1

x̂k = x̂k|k−1 +Gk

{
µ̂k − h(x̂k|k−1)

}
end {k}
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Fig. 1. MAP-PF track estimate.

4. SIMULATION RESULTS

We consider a scenario which is typical of unattended ground sen-
sor networks used to localize and track ground targets such as
tanks, trucks, and other military vehicles [5]-[7]. The scenario
is shown in Figure 1, where four acoustic sensor arrays are placed
at distributed sites and a vehicle travels along a track between the
arrays. Acoustic emissions of the target are collected by the arrays
and each site has the ability to perform computations to process
the data locally as well as to transmit raw and/or processed data to
a central processing site. The arrays are close to the track travelled
by the vehicle, therefore the range and bearing of the target seen
at a particular array changes rapidly as the target passes by. Plots
of the target bearing vs. time as the vehicle moves past the arrays
from northwest to southeast are shown in Figure 2.

The four acoustic sensor arrays are each six element circular
arrays with half wavelength spacing. The vehicle travels at a rel-
atively constant speed which varies between 15-20 km/hr due to
maneuvers. The target power is 45 dB at 15 m. and varies in-
versely with range squared. The tracker was initialized with the
correct target state at the beginning of the track.

Figure 1 shows bearing estimates obtained at each array using
ML with and without the penalty function. Without the penalty
function, good estimates are obtained at each array when the tar-
get is close by, but many erroneous estimates are produced when
the target is far away. A tracker using these estimates as mea-
surements is not able to maintain a track, even during the period
when the target is passing the arrays. The penalized ML bearing
estimates are significantly better than the ML estimates, and ex-
hibit no outliers. Figure 2 shows the track estimate obtained by the
MAP-PF tracking algorithm. The track estimate is quite close to
the actual track, even at the end of the run when the vehicle is a
long distance from any of the arrays.

The penalty function is critical to the success of the MAP-PF
tracking algorithm. During bearing estimation, it prevents erro-
neous estimates which can cause the tracker to lose track. During
the track update step, it allows the tracker to combine the bearing
estimates from the different arrays in the most useful way.

180 0 180

50

100

150

200

250

300

350

400

450

500

T
im

e

Array 1

Bearing (deg)
180 0 180

Array 2

Bearing (deg)
180 0 180

Array 3

Bearing (deg)
180 0 180

Array 4

Bearing (deg)

True
PML
ML

Fig. 2. Penalized ML estimates from MAP-PF tracker.

5. EXTENSIONS

This technique can be generalized to handle multiple wideband
sources in a straightforward manner. This generalization has been
applied to real aeroacoustic data from field tests conducted by the
Army Research Laboratory in [6]-[7].
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