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ABSTRACT

We propose two distributed particle filters to estimate and
track the moving targets in a wireless sensor network. The
observations by the sensors are divided into a set of disjoint
uncorrelated cliques. The first distributed algorithm runs the
local particle filters sequentially at each clique. The second
distributed algorithm runs the local particle filters in parallel
to obtain the local sufficient statistics, and then send these
statistics to a centralized location through multi-hops to ob-
tain the final estimates. The two distributed algorithms are
both convergence almost surely. In addition, we proposed to
use local Gaussian mixture model (GMM) to approximate
the posteriori distribution obtained from the local particle
filter. By propagating the GMM parameters rather than be-
lief, we achieve significant bandwidth and power consump-
tion reduction. Very promising simulation results are re-
ported as well.

1. INTRODUCTION

In [1], we proposed a Centralized Particle Filter(CPF) to
sequentially localize and track the targets in a wireless sen-
sor network. The algorithm is to partition the sensor field
into fixed-size regions and run a centralized particle filter
algorithm within the region. While it is simple to imple-
ment and is capable of delivering robust performance for
target tracking, CPF requires high communication because
the observation of each node has to be delivered to a region
center.

In this paper, we present two novel Distributive Particle
Filter (DPF) algorithms to facilitate efficient implementa-
tion of a particle filter based sequential target tracking sys-
tem over a wireless sensor network. Our approach is to
distribute the computation burden and communication bur-
den over the entire sensor network. Specifically, we divide
the sensor field into small uncorrelated “cliques” of sen-
sor clusters. Each clique of sensors can communicate each
other with local broadcasting via wireless channel. Hence
the communication cost within each clique is relatively low.
Two versions of distributed particle filtering algorithms, de-
noted by DPF-I and DPF-II are proposed: With DPF-I, the
importance weights are updated from one clique of sensors
to the next. Each clique’s estimate is built upon all preced-
ing cliques’ partial observations and estimates. These par-

tial estimates then will be forwarded via wireless communi-
cation channel to the next clique with one hop communica-
tion. With DPF-II, each clique updates its own importance
weight estimate in parallel based only on their local obser-
vations. These partial estimates are then transmitted over
the entire active sensor region through multi-hops to update
the final posterior distribution.

To facilitate these updates, the belief estimates must be
communicated among sensor cliques via wireless commu-
nication channel. These requirements would defeat the pur-
pose of distributive particle filter processing since it will
require transmitting large amount of information. To re-
duce this communication burden, we propose to approxi-
mate the belief estimates with a low dimension Gaussian
mixture model (GMM). Instead of transmitting raw esti-
mates of particles, we transmit the mixture Gaussian model
parameters. This approximation scheme significantly re-
duces the demand on the communication bandwidth.

Our distributed particle filters are quite different from
the few existing distributed particle filter approaches. In
particular, the work reported in [2] sought to update the
complete particle filter on each individual sensor nodes. The
algorithm requires the independency among all sensor ob-
servations. Further, very complicated learning procedures
must be performed before running their algorithm. Ours al-
gorithms, on the other hand, seek to derive the complete par-
ticle filter estimates over the final sensor node clique. The
designation of the final clique may be dynamically changed
based on the predicted target trajectories. Further, our dis-
tributed algorithm does not require learning procedure and
the sensor observations are not necessary to be independent
between each other.

2. DISTRIBUTED PARTICLE FILTER

2.1. Notation

Let X = {xt, t ∈ N} ∈ �nx be a stochastic process
defined over a probability space (Ω,F , P ), where nx is
the dimension of X . We also assume that X is a Markov
process such that P (xt+1 ∈ A|x1:t) = P (xt+1 ∈ A|xt).
The transition kernel of the Markov chain is defined as:
Kt(x, A) = P (xt+1 ∈ A|xt = x)

The observation model is: yt = ht(xt, wt), where the
observation noise wt is assumed to be independent with the
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state vector xt. Further, we assume that the observation yt

can be divided into a set of disjoint uncorrelated cliques, i.e.
yt = [yt,1,yt,2, ...,yt,M ]T .

We denote p̂t = P (xt|y0:t−1), πt = P (xt|y0:t), πt,k =
P (xt|y0:t−1,yt,1:k). Similarly, we denote p̂n

t and πn
t as the

prior and posterior probability estimated by centralized par-
ticle filter and πn

t,k and p̂n
t,k as the distributed prior and pos-

terior probability respectively.

2.2. Distributed particle filter algorithms

In general, most of particle filters require three steps to esti-
mate the posterior distribution, i.e., initialization, prediction
and update [3] [4].

During initialization, n random particles are uniformly
drawn from the initial prior distribution π0. By strong law
of large number, limn→∞ πn

0 → π0 a.s.
In the prediction step, the new positions of the parti-

cles are computed based on the transition kernel. In the
update step, the weights are calculated for each particle ac-
cording to the new received observations. In our proposed
distributed particle filter, the update step is performed by lo-
cal particle filters that are composed of a set of uncorrelated
cliques.

The information sensed by the nodes in sensor network
is governed by the events in the sensor field. Each signal
received by the sensor located at (ax, ay) corresponds to
a space-time signal with spatial bandwidth Bax , Bay and
temporal bandwidth B. The coherence distance Dax =

1
Bax

and Day = 1
Bay

denotes the spatial dimension over

which the signals are strongly correlated [5]. Dax × Day

determines spatial coherence region, i.e., clique. The sig-
nals are approximately uncorrelated in distinct clique, i.e.
πt ≈ ∏M

k=1 πt,k, where M is the number of uncorrelated
cliques.

For signal produced by point source such as targets, the
spatial signal bandwidth is determined by the temporal band-
width via the speed of signal propagation. For isotropic spa-

tial propagated signal, s(ax, ay, t) = s(0, 0, t−
√

ax
2+ay

2

v ),
where v is the speed of propagation. The spatial bandwidth
and coherence distance in the radial coherence dimension
are:

Br =
B

v
; Dr =

1
Br

=
v

B
(1)

where r =
√

ax
2 + ay

2

Coherence distance is much smaller for sound propaga-
tion than that for magnetic wave propagation. Thus, when
we apply acoustic signal for target localization and tracking,
the active sensor region can be divided into several small un-
correlated cliques. This feature makes it possible to run the
distributed particle filter efficiently.

2.2.1. Distributed Particle Filter Algorithm I: DPF-I

The predicted particles distribute as: xi
t,0 ∼ Kt

(
xi

t−1,M , ·),
where Kt

(
xi

t−1,M , ·) is the transition kernel, xi
t−1,M and

xi
t,0 are respectively, the current and predicted particle po-

sitions.
Distributed algorithm 1 updates the posterior distribu-

tion sequentially by a sequence of local particle filters, i.e.
For k = 1 to M ,

Denote x̄i
t,k = xi

t,k−1,
Compute

wi
t,k = gt,k

(
x̄i

t,k

)
/

n∑
j=1

gt,k

(
x̄j

t,k

)
(2)

where gt,k(x̄i
t,k) = P (w = yt,k − ht,k(x̄i

t,k)).
Resample particles by replacing x̄i

t,k with a number of
offspring ni

t,k according to a multinomial distribution of pa-
rameters wi

t,k and
∑n

i=1 ni
t,k = n. Denote the resampled

particles as xi
t,k, the approximated posterior distribution be-

fore and after resampling are:

π̄n
t,k =

n∑
i=1

wi
t,kδ{x̄i

t}

πn
t,k =

1
n

n∑
i=1

ni
t,kδ{x̄i

t} =
1
n

n∑
i=1

δ{xi
t,k}

Theoretically, resampling procedure is not necessary at
each local DPF. However, transmitting these particles as
well as weights of these particles among the local DPFs
needs high communication. To reduce the communication,
the posterior distribution( particles and weights) is repre-
sented by a low dimensional GMM. Hence, only GMM pa-
rameters need to be transmitted among the local DPFs. Re-
sampling procedure is performed to facilitate the estimation
of GMM parameters.

We have proved that limn→∞ πn
t,M → πt almost surely

and the convergence rate is M√
n
. Due to space limitation,

these proofs are omitted here.

2.2.2. Distributed Particle Filter Algorithm II: DPF-II

In stead of updating the posterior distribution sequentially
using a sequence of local particle filters, the DPF-II runs the
local particle filters in parallel to obtain the local sufficient
statistics and estimate the final posterior distribution based
on these local sufficient statistics.

At every clique, parallel compute

wi
t,k =

gt,k

(
x̄i

t

)
∑n

j=1 gt,k

(
x̄j

t

) (3)

where x̄i
t ∼ Kt−1(xi

t−1, .)
Note that gt,1:M (xt) =

∏M
k=1 gt,k (xt) when cliques are

uncorrelated between each other, the update weight at time
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t is:

wi
t =

gt,1:M

�
x̄i

t

�

�n
j=1 gt,1:M

�
x̄j

t

� =
gt,1

�
x̄i

t

��M
k=2 gt,k

�
x̄i

t

�

�n
l=1 gt,1

�
x̄l

t

��n
j=1

�M
k=1 gt,k(x̄

j
t)

�n
l=1 gt,1(x̄l

t)

=
wi

t,1

�M
k=2 gt,k

�
x̄i

t

�

�n
j=1w

j
t,1

�M
k=2 gt,k

�
x̄j

t

� = ... =

�M
k=1 wi

t,k
�n

j=1

�M
k=1 wj

t,k

(4)

Eq. (4) shows that DPF-II yields identical particle filter
estimates as the centralized implementation. The conver-
gence rate for DPF-II is 1/

√
n.

3. GAUSSIAN MIXTURE APPROXIMATION

3.1. Gaussian Mixture Approximation

Both distributed DPF-I and DPF-II require belief propaga-
tion, which may need to transmit more bits than raw obser-
vation data. In this paper, we propose to approximate the
distribution by Gaussian Mixture Model (GMM).

πn
t,k � π̂n

t,k =
c∑

m=1

λ̂m
t,kN (µ̂m

t,k, σ̂m
t,k) (5)

where c is the number of mixtures. Thus, the belief can be
propagated through the transmission of the parameters of

GMM
(
λ̂m

t,k, µ̂m
t,k, σ̂m

t,k

)
rather than the particles and weights.

The communication burden is dramatically reduced.
The parameters of GMM are estimated using EM algo-

rithm [7]. Using Lagrange multiplier, one may find:
Expectation step:

λ̂m
t,k =

1
n

n∑
i=1

λ̂t,k

(
m|xi

t,k

)
(6)

λ̂t,k

(
m|xi

t,k

)
=

N
(
xi

t,k, µ̂m
t,k, σ̂m

t,k

)
λ̂m

t,k

∑c
l=1 N

(
xi

t,k, µ̂l
t,k, σ̂l

t,k

)
λ̂l

t,k

Maximization step:

µ̂m
t,k =

∑n
i=1 xi

t,kλ̂t,k

(
m|xi

t,k

)

∑n
i=1 λ̂t,k

(
m|xi

t,k

)

σ̂m2
t,k =

∑n
i=1

(
xi

t,k − µ̂m
t,k

)2

λ̂t,k

(
m|xi

t,k

)

∑n
i=1 λ̂t,k

(
m|xi

t,k

) (7)

By incorporating this GMM approximation, the DPF-I and
DPF-II algorithm can be modified accordingly.

Note that for DPF-II, each clique center runs the algo-
rithm in parallel and passes the local GMM parameters to

the region center through multi-hop communication (nor-
mally, we can dynamically pick one of the clique center
as the region center). The updated posterior distribution
through each hop is the normalized multiplication of local
GMMs, which is c2 mixtures of Gaussian. We further use
the k-mean algorithm [8] to cluster the c2 mixtures of Gaus-
sian into a c-mean mixture of Gaussian and forward it to the
next hop. The detailed implementation is omitted due to the
space limitation.

The number of c can be selected according to the num-
ber of targets. Since we can merge targets together when
they are close to each other, the number of distinct targets is
small.

3.2. Distributed communication in sensor network

To reduce the communication cost, the nodes within the
clique broadcast so that the clique center can receive the
observation of its member nodes. The power for broadcast-
ing can be low since the size of the clique is small (normally
it is less than 30 meters for the acoustic signal). Each node
will be set a backoff time before broadcasting to avoid in-
terfering between each other. The backoff time we designed
is inverse proportional to its SNR.

The clique center will pass GMM parameters using pear
to pear communication. The communication cost in bits per
time step is:

∑GHk, where G is the number of bits required
to represent the parameters of local GMM, Hk is the num-
ber of communication hops required to pass the local GMM
parameters. Hk = 1 for DPF-I. The maximum of Hk is M
for DPF-II.

3.3. Comparison of the two algorithms

As stated above, these two DPF algorithms convergence al-
most surely to the true posterior probability. The conver-
gence rate of DPF-II is faster than that of DPF-I. In fact,
from Eq.(4), we know that the distributed particle filter with
DPF-II has no loss compared with the centralized particle
filter. Therefore, to get same performance, DPF-I requires
more particles than DPF-II. However, DPF-II requires higher
communication than DPF-I.

4. SIMULATION ON TWO TARGETS TRACKING
IN WIRELESS SENSOR NETWORK

Consider the tracking of moving targets over a 2-dimensional
sensor field of the size 100×100m2. The Markov state tran-
sition model is described as follows:

al(t) = v(t)
ul(t) = ul(t − 1) + al(t)T

ρl(t) = ρl(t − 1) + ul(t − 1)T +
1
2
al(t)T 2

where ρl(t) stands for the location of source l, ul(t) is
the velocity of source l and al(t) is the acceleration of the
source l. T is the time interval and v(t) is assumed to
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Fig. 1. Sensor Placement for Target Localization Estimation
Simulation (Big node is the clique center)

be uniformly distributed on [−Amax Amax]. Amax is the
maximum acceleration rate.

In [6], we proposed the intensity (energy) based estima-
tion model for source localization that has been validated
through real world experiment:

yi(t) = γi

L∑
l=1

sl(t)
‖ ρl(t) − ri ‖2

+ εi(t) (8)

where L is the number of targets (assumed to be known),
yi(t) is the acoustic energy received by the ith sensor at
time t. εi(t) is a perturbation term that summarizes the
net effects of background additive noise and the parame-
ter modeling error. γi and ri are the gain factor and loca-
tion of the ith sensor respectively, sl(t) is the energy emit-
ted by the lth source during the tth time interval. We have
analyzed [6] the probability distribution of εi(t) and con-
cluded that it can be modeled well with an i.i.d. Gaussian
random variable when the time window T for averaging the
energy is sufficiently large. The mean and variance of each
εi(t) can be empirically estimated from constant false alarm
(CFAR) detector. The sensors are randomly deployed as
Fig.1. The whole sensor field is divided into four disjoint
sensor cliques. The source energy for target 1 measured at
1 meter distance is set as s1 = 10000. The source energy
for target 2 is set as s2 = 1.2s1. The background noise
level is set as σi = 3 for all sensors in the sensor field. The
number of particles is chosen to be 500. 500 repeated trials
are simulated for each sequential running point. Estimation
bias and variance are shown in Fig. 2. Results show that
performance of the distributed of particle filter is almost the
same as the centralized algorithm. As our analysis, DPF-II
has better performance than DPF-I.

5. CONCLUSION

Two distributed particle filters are proposed to localize and
track the targets in wireless sensor network. The algorithms
are run distributively at local clique to obtain the local suffi-
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Fig. 2. Estimation Bias and Variance using Centralized and
Distributed Particle Filter estimation.

cient statistics. By approximating the local sufficient statis-
tic (belief) with GMM, the communication burden is dra-
matically reduced while the performance is maintained al-
most the same as the centralized particle filter. The algo-
rithm can further be improved by grouping the targets and
reducing the number of particles through a deterministic
kernel placement.
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