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ABSTRACT
We study the problem of communicating sensor readings

over a multiaccess channel. Previous works focused on the

approach that each sensor is allocated an orthogonal channel

to transmit its data as in TDMA (Time-Division Multiple

Access). In this paper, we propose an alternative method in

which the sensors transmit simultaneously to deliver a noisy

version of the type of sensor observations. We analyze the

estimation/detection performance of this Type-Based Mul-

tiple Access (TBMA) approach in inferring a parameter θ.

The data at different sensors are modeled as conditionally

independent given θ. An asymptotic performance analysis

is presented, and significant gains in estimation/detection

performance and bandwidth usage are demonstrated.

1. INTRODUCTION

Main functions of wireless sensor networks include sens-

ing of a physical phenomena, and the delivery of the sensed

data. Since sensor data are correlated, the efficiency is im-

proved by processing the data locally by a fusion center and

then delivering a compressed version.

We consider the up-link communication between n sen-

sors and a fusion center. The fusion center is interested in

estimating or detecting a parameter θ which affects the dis-

tribution of sensor data. It is assumed that the data of each

sensor, Xi, can take k possibilities (i.e., Xi ∈ {1, · · · , k}).1

Moreover, X1, · · · , Xn are assumed i.i.d. conditional on

the parameter θ.

A conventional approach to the up-link problem is to al-

locate orthogonal dimensions to each sensor as in TDMA or

FDMA. In this paper, we consider an alternative method in
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1In some networks such as the ones designed to detect existence of

targets, the sensor data are indeed discrete. In others that are used for

measurement, what we call X1, · · · , Xn actually model quantized data,

where identical quantizers are used at sensor nodes.

which transmissions from different sensors overlap with one

another, but different observations are assigned orthogonal

dimensions. That is, let s1, · · · , sk be orthonormal wave-

forms. In the proposed approach, sensor i transmits wave-

form
√

EsXi
, where E is the energy available for transmis-

sion (assumed to be the same for all sensors). The received

signal at the fusion center is modeled as

z =
n∑

i=1

hi

√
EsXi + w, (1)

where hi ∈ R is the channel gain2 from sensor i, and w is

white Gaussian noise with power spectral density σ2.

The basic idea of scheme (1) is easier to understand for

the special case that all hi are equal to 1. In this case,

z =
k∑

j=1

Nj

√
Esj + w, (2)

where Nj is the number of sensors that observe symbol j.

After appropriate matched filtering and scaling by 1/n, it is

seen that the received signal z contains a noisy version of

the type of sensor observations [2]. Since the type is a suffi-
cient statistic for estimating θ, the communication could be

considered lossless if the fusion center had noiseless access

to the type. We later argue that the effect of noise w in (2)

actually becomes negligible for n large enough.

In general, we shall call the scheme leading to (1) as

the Type-Based Multiple Access (TBMA). This method is

proposed by the authors in [1], [3], where its performance

is analyzed for parameter estimation. Liu and Sayeed pro-

posed the TBMA independently [4] in the context of detec-

tion. Estimation/detection over multiaccess channels prob-

lem has attracted considerable attention recently. However,

previous works (e.g., [5], [6]) focused on the analysis and

design of systems with orthogonal allocation such as TDMA.

In this paper, we first present an asymptotic performance

analysis of the TBMA in estimating a continuous parame-

ter θ ∈ R. Our analysis assumes that the channel gains

2The results of this paper can be easily extended to complex valued

signals and channel gains (see [1]).
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h1, · · · , hn are i.i.d., extending the analysis for hi = 1 in

[3]. In particular, we derive the asymptotic mean square er-

ror (MSE) with a variant of the maximum-likelihood (ML)

estimator as n→∞.

We then derive the asymptotic error exponents for the

ML detector in the binary hyporthesis testing problem

H0 : θ = θ0 vs. H1 : θ = θ1. (3)

The ML detector over a fading channel is in general in-

tractable. As a result, we propose a computationally fea-

sible, yet asymptotically equivalent, version of it, and char-

acterize its error exponents.

Our analysis indicates that both the detection and es-

timation performance of TBMA is superior to TDMA de-

pending on the channel conditions. Surprisingly, if there

is no channel fading (i.e., all hi are constant and identi-

cal), then the asymptotic estimation/detection performance

of TBMA is as if the fusion center has noiseless access to

X1, · · · , Xn. We provide a general comparison between the

TDMA and TBMA approaches in the conclusions.

In Section 2, the estimation results are presented. Sec-

tion 3 derives the error exponents for hypothesis testing.

Numerical examples and comparison with orthogonal allo-

cation methods such as TDMA are distributed within the

sections. Section 4 concludes the paper.

2. PARAMETER ESTIMATION WITH TBMA

Let pθ = [pθ(1) · · · pθ(k)]T be the probability mass func-

tion the data X1, · · · , Xk comes from. Suppose that the

channel gains h1, · · · , hn are i.i.d. with non-zero mean h :=
E(hi) and σ2

h := Var(hi) (we will discuss zero-mean hi’s

later). A sufficient statistic in estimation is the inner product

between z and the waveforms s1, · · · , sk. Let

y :=
1√
Enh

[(z|s1) · · · (z|sk)]T (4)

=
1
n

n∑
i=1

hi

h
eXi + w̃, (5)

where e1, · · · , ek are the standard basis vectors, and w̃ ∼
N (0, σ2

En2 I).
In general, the distribution of y has a complicated form.

However, the following lemma asserts that the distribution

approaches the Gaussian as n→∞. Also, implicit in the

lemma is that the effect of noise on the distribution of y dis-

appears as n→∞ (notice that the power of w̃ is O(1/n2)).

Lemma 1 The asymptotic distribution of y is

y � N (pθ,
1
n

Σθ) as n→∞, 3

3Notation “�” means that y converges in probability to pθ , and√
n(y − pθ) converges in distribution to N (0, Σθ) as n→∞. The no-

tation “�” in the rest of the paper should be understood similarly.

where Σθ = (1 + σ2
h

h2 )Diag(pθ) − pθp
T
θ .

Proof Follows almost directly from the law of large num-

bers and the multivariate central limit theorem. For the de-

tails see [1].

In general, the actual ML estimator based on y is com-

putationally intractable. Nevertheless, the asymptotic dis-

tribution of y provided by Lemma 1 can be used to design

an estimator for the TBMA. If the distribution of y were

exactly equal to N (pθ,
1
nΣθ), then its pdf would be

f(y) =
1

(2π/n)
k
2

exp

(
−n(y − pθ)T Σ−1

θ (y − pθ) + log |Σθ|
2

)
.

Given y, the ML estimator based on this distribution max-

imizes f(y) with respect to θ ∈ R. Notice that this maxi-

mization is equivalent to minimizing the exponent. More-

over, the first term in the exponent has a factor n, and it

dominates the minimization for large n. As a result, we

propose the estimator θ̂ which minimizes

M(θ) := (y − pθ)T Σ−1
θ (y − pθ)

with respect to θ. We shall call this the asymptotic ML esti-

mator. The following theorem provides the asymptotic MSE

of θ̂.

Theorem 1 Under certain regularity conditions4 on the {pθ :
θ ∈ R}, the estimator θ̂ satisfies

θ̂ � N (θ,
1 + σ2

h

h2

nI(θ)
) as n→∞, (6)

where I(θ) =
∑k

j=1
(dpθ(j)/dθ)2

pθ(j) is the Fisher Information
[7] in variable Xi.

Proof See [1].

Equation (6) implies that the estimator θ̂ asymptotically

achieves the Cramer-Rao Bound (CRB) 1
nI(θ) [7] on the

MSE if σ2
h = 0 (i.e., all hi’s are constant). According to

the CRB, no unbiased estimator θ̂, even the ones based on

the exact data X1, · · · , Xn, can have lower MSE. In this

respect, the TBMA scheme is asymptotically optimal in es-

timating the parameter θ. This conclusion was first obtained

in [3]. On the other hand, the theorem also indicates that if

σ2
h/h2 is large, then there is a significant gap between the

CRB and the asymptotic MSE with TBMA.

We made simulations to check the validity of the as-

ymptotic results for finite n. In general, we have observed

that (1 + σ2
h/h2)/nI(θ) provides a reasonably accurate es-

timate for the MSE of TBMA. Fig. 1 considers the case that

4The theorem requires conditions such as three times differentiability

of pθ with respect to θ (see [1]).
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Fig. 1. Performance of TBMA in parameter estimation.

X1, · · ·
, Xn are Bernoulli(θ) distributed, hi ∼ N (1, 1), and SNR =
E/σ2 = −10dB. The antipodal constellation and the ML

estimator are used with the TDMA (the ML estimator is

based on the received signal at the fusion center, not based

detected symbols).

So far we have assumed that E(hi) �= 0. When E(hi) =
0, an interesting phenomena happens: TBMA fails to de-

liver the type. More precisely, what happens is that if we

define y = 1√
En

[(z|s1) · · · (z|sk)]T (observe the differ-

ence between this and (4)), then y→N (0, Diag(pθ)) in dis-

tribution as n→∞. In other words, the pdf pθ doesn’t ap-

pear in the mean of the asymptotic distribution, but in the

covariance. This indicates that when hi = 0, even with the

ML estimator the MSE does not go zero as n→∞. We have

verified this fact via simulations, but can not include them

here due to space limitations (see [1]).

In band-pass wireless communications, the hi’s typi-

cally contain a random phase ejρ, ρ ∼ uniform[0, 2π]. Con-

sequently, the channels have a zero mean. In order to have

E(hi) �= 0, the received phases somehow need to be aligned.

For this purpose, the use of transmitter CSI (Channel Side

Information) is proposed in [1]. In case the transmitters can

be made aware of their phases, the TBMA approach still

works well [1].

3. HYPOTHESIS TESTING WITH TBMA

This section considers the binary hypothesis testing setup

in (3). Lemma 1 indicates that the received signal y under

hypothesis Hi becomes concentrated around pθi . In hypoth-

esis testing, errors mainly happen because the realization of

y turns out to be close neither to pθ0 nor to pθ1 . To be able

to assess the probability of such events, the theory of types

(or, in general, the large deviations theory) can be used. As

a notation, we let D(Q||P ) denote the relative entropy [2]

between the pdfs Q and P . Similarly, for random variables

X and Y , D(Y ||X) denotes the relative entropy between

the pdfs of Y and X
Suppose that the channels h1, · · · , hn are i.i.d. and have

non-zero mean h. Let Bε(r) be the open ball in R
k centered

at r = [r1 · · · rk]T with radius ε > 0. The next theorem

characterizes the exponent of the probability that the real-

ization of y turns out to be in Bε(r).

Theorem 2 Let ε > 0, r ∈ R
k and r �= pθ. Then,

lim
n→∞

1
n

log Pr{y ∈ Bε(r)} = −Eθ(r) + O(ε) (7)

where O(ε) is a function which goes to zero as ε→0,

Eθ(r) = min
p̃

{D(p̃||pθ) +
k∑

j=1

p̃(j)Λ(
hrj

p̃(j)
)} (8)

Λ(
hrj

p̃(j)
) = min

h̃i:E(h̃i)=
hrj
p̃(j)

D(h̃i||hi). (9)

The theorem says that the probability of having y at lo-

cation r is approximately e−nEθ(r) for large n. This inter-

pretation enables us to understand the behavior of the ML

detector for large n. When n is large, the ML detector par-

titions the space R
k into two sets such that the detection

region for H1 is approximately equal to

Γ1 = {r ∈ R
k : Eθ1(r) < Eθ0(r)};

the reason for detecting H1 in Γ1 is that the approximate

likelihood e−nEθ1 (r) under H1 is bigger than the approxi-

mate likelihood e−nEθ0 (r) under H0. Similarly, Γ0 = Γc
1 is

the detection region for H0 for large n.

The computation of the likelihood function with TBMA

is intractable in general. Consequently, the exact ML de-

tector can not be directly implemented. The above interpre-

tation of the ML detector, however, suggests an asymptotic
version which detects Hi when y is in Γi. In general, the

functions Eθ(r) are easier to compute than the exact likeli-

hood.

Let αn = Pr{H0→H1}, βn = Pr{H1→H0} denote

the type I and type II error probabilities.

Theorem 3 The error exponent of the asymptotic ML de-
tector is given by

η := − lim
n→∞

1
n

log αn = min
r∈∂Γ1

Eθ0(r), (10)

where ∂Γ1 = {r : Eθ0(r) = Eθ1(r)} is the boundary be-
tween Γ1 and Γ0. The exponent of βn is same as that of
αn.

Notice that when all hi’s are constant and identical, Eθ(r) =
D(r||pθ) if r is a probability vector, and is ∞ otherwise.
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Fig. 2. Performance of TBMA in detection.

Therefore, the exponent provided by Theorem 3 is same as

that of the true ML detector [2, p. 308] based on X1, · · · , Xn.

Hence, if all hi are constant the TBMA scheme with the pro-
posed ML-variant estimator gives the same asymptotic per-
formance with the ML detector based on X1, · · · , Xn.

Next, we will compute the error exponents for an ex-

ample channel. Consider the ON/OFF channel, i.e., hi is

Bernoulli {0, 1} distributed with mean h. For this scenario,

Λ(·) is the relative entropy function between two Bernoulli

variables. Using the Lagrange multipliers method, it is easy

to get

Eθ(r) = RD(r̃||pθ) + R log
R

h
+ (1 − R) log

1 − R

1 − h
,

where R = h
∑

j rj and r̃ = r/(
∑

j rj). Theorem 3 gives

the error exponent of αn as

η = RC + R log
R

h
+ (1 − R) log

1 − R

1 − h
,

where

C = − min
0≤λ≤1

log(
∑

j

pλ
θ0

(j)p1−λ
θ1

(j))

is the so-called Chernoff information [2], and R = heC/(1−
h + heC).

Simulation results for the hypothesis H0 : Xi ∼
Bernoulli(0.8), H0 : Xi ∼ Bernoulli(0.2) are given in

Fig. 2. The LD (Large Deviations) estimate refers to e−nη.

SNR = E/σ2 = 3dB. For the TDMA, the antipodal con-

stellation and the ML detector based the received signal are

used. We see that the performance of TBMA with the as-

ymptotic ML detector follows the LD estimate reasonably

closely.

4. CONCLUSIONS

Signaling design for sensor networks is a new avenue for

research. The problem is practically relevant, and is espe-

cially interesting, because it involves joint design of modu-

lation and medium access.

In this paper we proposed the TBMA approach to com-

municate sensor data. One advantage of TBMA is that its

bandwidth/time requirement is independent of the number

of transmitting sensors (k orthogonal dimensions are needed).

On the hand, the bandwidth requirement of the classical

TDMA approach grows linearly with n. In a network with

large n and small k, the TBMA is significantly more band-

width efficient than TDMA.

The estimation/detection performance of TBMA depends

on the type of channel fading. If the channel has non-zero

mean, and small variance, the TBMA has very desirable

MSE and error probability performance. In particular, if

the sensor channels are constant and identical, then asymp-

totic performance of TBMA is as if the fusion center has

direct access to X1, · · · , Xn. The performance of TDMA

approach is sensitive to the amount of channel noise. On

the hand, the performance of TBMA is not affected by the

noise when n is large.

After the submission of this work, we have become aware

of the paper by Liu and Sayeed [8] in which it is shown that

the TBMA achieves the best error exponent in hypothesis

testing in the non-fading scenario. Our analysis in this pa-

per is also applicable in case of fading.

One drawback of TBMA is its poor performance in chan-

nels with zero-mean. Its our hope that this work will stim-

ulate some interest to come up with improvements or better

schemes for zero-mean channels.

5. REFERENCES

[1] G. Mergen and L. Tong, “Type-based estimation over multiaccess

channels,” submitted to IEEE Trans. on Signal Processing, July 2004.

[2] T. Cover and J. Thomas, Elements of Information Theory, John Wiley

& Sons, Inc., 1991.

[3] G. Mergen and L. Tong, “Estimation over deterministic multiaccess

channels,” in 42nd Annual Allerton Conf. on Commun., Control and
Comp., 2004.

[4] Ke Liu and A. M. Sayed, “Asymptotically optimal decentralized type-

based detection in wireless sensor networks,” ICASSP’04 presenta-

tion slides, May 19 2004.

[5] J.-F. Chamberland and V. V. Veeravalli, “Asymptotic results for de-

centralized detection in power constrained wireless sensor networks,”

IEEE JSAC Special Issue on Sensor Networks, 2004.

[6] B. Chen, R. Jiang, T. Kasetkasem, and P.K. Varshney, “Fusion of de-

cisions transmitted over fading channels in wireless sensor networks,”

in the 36th Asilomar Conference, 2002.

[7] H. V. Poor, An Introduction to Signal Detection and Estimation,

Springer-Verlag, New York, 1994.

[8] Ke Liu and A. M. Sayed, “Optimal distributed detection strategies for

wireless sensor networks,” in 42nd Annual Allerton Conf. on Com-
mun., Control and Comp., Sep.29-Oct.1 2004.

IV - 844

➡ ➠


