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ABSTRACT

The problem of multiple sensor scheduling for tracking a
highly maneuvering target in clutter is considered. The
objective is to schedule the sensors one or multiple time
steps ahead so that the overall tracking performance of the
system can be improved while minimizing the cost of re-
sources. In the proposed scheduling algorithm, under the
constraint that only one sensor may be used at any time
step, we predict the expected cost one or multiple time
steps ahead as a function of the candidate sensor schedul-
ing sequences, and pick the sequence that minimizes an
expected performance metric. We use a random sampling
approach coupled with switching multiple kinematic models
for target motion, to generate future (pseudo-)states and
(pseudo-)measurements which allows computation of the
relevant performance metric. Tracking of highly maneu-
vering target is achieved by an effective suboptimal filter-
ing algorithm based on interacting multiple model (IMM)
filtering approach combined with probabilistic data associ-
ation (PDA) technique and the proposed sensor scheduling
scheme. The proposed algorithm is illustrated via a simula-
tion example involving two geographically distributed radar
sensors.

1. INTRODUCTION

Sensor scheduling (or sensor management, or multisensor
resource allocation) is the allocation of sensing resources
over time. How to task a sensor or a group of sensors
when each sensor may have many modes and search pat-
terns, while there may also be constraint on system re-
sources. Sensor management (or multisensor resource allo-
cation) problems have been considered in [3]-[7] and refer-
ences therein. Such problems are an integral part of any
agile beam tracking system [1],[2],[5]. Which sensor (or
group of sensors) should “follow” which target from among
a group of targets and how often should the followed tar-
get be visited, are some of the relevant problems. This is a
stochastic control problem that involves optimization of an
expected cost function over time. Although this optimiza-
tion can be performed using dynamic programming [7], the
computations involved can be prohibitive. Therefore, sub-
optimal solution have been sought [3],[4],[6]. An integral
part of the relevant cost evaluation is target state estima-
tion at the current time. Refs. [3], [4] and [6] do not allow
multiple switching kinematic models for each maneuvering
target, hence, are not suitable for tracking highly maneu-
vering targets.

Our basic approach will be similar to that in [3]-[4] except
that we do not propose to use (random sampling based)
particle filters for target state estimation; rather we will use
IMM/PDA approaches for state estimation [1],[8]. Unlike
[3],[4], we allow multiple kinematic models for the target to
allow high degree of target maneuvers. The basic idea is
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to compute a relevant cost function for all possible sensor
management scenarios and then pick the one that minimizes
the cost. [3] uses an information theoretic cost whereas [4]
picks the mean-square state estimation error for the next
(future) time horizon (1 or more sampling intervals).

2. TARGET TRACKING PROBLEM
FORMULATION

Assume that the dynamics of the target can be modeled as
one of the n hypothesized models. The model set is denoted
as Mn := {1, 2, · · · , n}. The event that model i is in effect
during the sampling period (tk−1, tk] will be denoted by
M i

k.
For the j-th hypothesized model (mode), the state dy-

namics and measurements of the target are modeled as

xk = F j
k−1xk−1 + Gj

k−1v
j
k−1 (1)

and
zl

k = hj,l(xk) + wj,l
k for l = 1, ..., q, (2)

where xk is the system state of the target at tk and of dimen-
sion nx, zk is the (true) measurement vector from sensor l

at tk and of dimension nzl, F j
k−1 and Gj

k−1 are the system
matrices when model j is in effect over the sampling period
(tk−1, tk] for the target and hj,l is the nonlinear transfor-
mation of xk to zl

k (l = 1, 2, ..., q) for model j. A first-order
linearized version of (2) is given by

zl
k = Hj,l

k xk + wj,l
k (3)

where Hj,l
k is the Jacobian matrix of hj,l evaluated at some

value of the estimate of state xk. The nature of the system
state, the various matrices in (1) and (3), and the measure-
ments is specified in more detail in Sec. 4. The process noise
vj

k−1 and the measurement noise wj,l
k are mutually uncorre-

lated zero-mean white Gaussian processes with covariance
matrices Qj

k−1 and Rj,l
k , respectively. At the initial time

t0, the initial conditions for the system state of the target
under each model j is assumed to be Gaussian random vec-
tors with known mean x̄j

0 and known covariance P j
0 . The

probability of the target in model j at t0, µj
0 = P{M j

0},
is also assumed to be known. The switching from model
M i

k−1 to model M j
k is governed by a finite-state stationary

Markov chain (same for all targets) with known transition

probabilities pij = P{M j
k |M i

k−1}. Henceforth, tk will be
denoted by k. Note that, in general, at any time k, some
measurements may be due to clutter and some due to the
target, i.e. there can be more than a single measurement
at time k.

2.1. IMM/PDA filter

The IMM/PDA filter is given in detail in [1],[8]. It is a
suboptimal filter that yields the following state estimates,
the corresponding covariance matrices at time k given all
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the relevant measurements up to time k (denoted by Zk),
and several other entities:

x̂k|k := E{xk|Zk} (4)

and the associated error covariance matrix

Pk|k = E{[xk − x̂k|k][xk − x̂k|k]′|Zk} (5)

where x′
k denotes the transpose of xk. Also obtained are

“mode-” (or model-) conditioned state estimates, corre-
sponding covariances, and aposteriori probabilities (∀j ∈
Mn):

x̂j
k|k := E{xk|M j

k ,Zk}, (6)

the associated error covariance matrix

P j
k|k := E{[xk − x̂k|k][xk − x̂k|k]′|M j

k ,Zk}, (7)

and the conditional mode probability

µj
k := P [M j

k |Zk]. (8)

Furthermore, it is assumed throughout that the conditional
density of xk given the mode M j

k and observations Zk, is
Gaussian:

p
(
xk|M j

k ,Zk
)
∼ N

(
xk; x̂j

k|k, P j
k|k

)
(9)

where

N (x; y, P ) := |2πP |−1/2exp[−1

2
(x − y)′P−1(x − y)]. (10)

For details, the reader is refered to [8] (also [1]).

3. SENSOR SCHEDULING

Our basic approach will be as in [3]-[4] except that we do not
propose to use (random sampling based) particle filters for
target state estimation; rather we will use the IMM/PDA
approach for state estimation. Unlike [3],[4], we allow mul-
tiple kinematic models for the target to allow high degree of
target maneuvers. The basic idea is to compute a relevant
cost function for all possible sensor management scenarios
and then pick the one that minimizes the cost. [3] uses
an information theoretic cost whereas [4] picks the mean-
square state estimation error for the next (future) time hori-
zon (1 or more sampling intervals). We will follow [4] in this
respect.

To make matters more concrete, we will consider a very
simplified case. With a time horizon of 1 sample, let

x̂
(s)

k+1|k+1
denote the state estimate at time k+1 given mea-

surements up to time k + 1 using a particular sensor man-
agement scenario s. Then we may pick s to minimize the
cost

C := E{‖xk+1 − x̂
(s)

k+1|k+1‖2}. (11)

In the case of two sensors, s takes two values: s = 1 implies
use sensor 1 and s = 2 implies use sensor 2 where we are re-
stricted to use only one sensor at a given time. Since neither

xk+1 nor the measurement at time k+1 (hence x̂
(s)

k+1|k+1) is

available, one can not compute (11). Therefore, as in [3],[4],
we resort to Monte Carlo methods (random sampling) to
generate future (pseudo) states and measurements in order
to try out all possible sensor management scenarios.

Suppose that (via IMM/PDA of Sec. 2) we have the

conditional state estimate x̂j
k|k at time k given measure-

ments up to time k and conditioned on mode j at time k
(≡ M j

k), and the corresponding state estimation error co-

variance matrix P j
k|k ∀j ∈ Mn. We first randomly sample

the mode in the duration (tk−1, tk] according to the distri-

bution µj
k; let the selected mode be j̃(m) (m denotes the

m-th random sample). With selected mode j̃(m) in effect in

the duration (tk−1, tk], randomly select the mode ĩ(m) for
the duration (tk, tk+1] according to the transition probabil-
ities pj̃(m)i. The state xk is sampled from the distribution

N (xk; x̂j̃
k|k, P j̃

k|k) as x̃
(m)
k . Similarly generate the process

noise vĩ(m)

k to get a sample of xk+1 denoted by x̃
(m)
k+1 from

the equation

x̃
(m)
k+1 = F ĩ(m)

k x̃
(m)
k + Gĩ(m)

k+1 vĩ(m)

k . (12)

Then use the sensor measurement equation with randomly
generated noise vector with the specified statistics, to gener-
ate a pseudo-measurement at sensor l at time k+1, denoted

by z̃
l(m)
k+1 (see also (1) and (2)). Here m (m = 1, 2, · · · , N)

indexes the m-th random sample and l indexes the sensor.
Then we replace (11) with

Ĉ := (1/N)

N∑
m=1

‖x(m)
k+1 − x̂

(s),(m)

k+1|k+1
‖2 (13)

where x̂
(s),(m)

k+1|k+1 is obtained by operating on z̃
l(m)
k+1 (l =

1, 2, · · · , q) under sensor management scenario s using
IMM/PDA and related approaches. The cost (13) is then
used to select suitable (optimal) sensor scheduling and to
get the actual measurements at time k + 1 on which the
actual state estimate is based using IMM/PDA; then the
process is repeated.

Although above we presented (one time-step: time hori-
zon of one sample) myopic scheduling, extension to multi-
time steps (time horizon greater than one sample) schedul-
ing is straightforward. In this case, the cost will be eval-
uated for all possible sensor sequences. If total number of
sensors are q and if the sensors are to be scheduled p-stage
ahead, then total number of possible sequences are qp. The
sequence with the minimum cost is selected for sensor allo-
cation at every time step.

4. SIMULATION EXAMPLE

We now consider tracking a highly maneuvering target in
the presence of clutter with two sensors where only one
sensor can be deployed at any given time. Both sensors
are radars located at two different positions. We carry out
state estimation for the target kinematic components using
the IMM/PDA filter in which the states are updated with
the measurements obtained from the scheduled sensor, al-
located by the proposed sensor scheduling algorithm. With
the proposed scheduling algorithm, we carry out one-stage
and two stage scheduling and compare the results with the
no-scheduling case. The details of the simulation example
are as follows:
The True Trajectory: The (2-D) target starts at loca-
tion [19689 10840] in Cartesian coordinates in meters. The
initial velocity is [-8.3 -299.9] in m/s. The target moves
with a constant speed of 300.01 m/s. Its trajectory is a
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straight line with constant velocity between 0 and 20 sec.,
a coordinated turn of -0.15 rad/s with a constant accelera-
tion of 45 m/s2 between 20 and 35 s, a straight line with a
constant velocity between 35 and 55 s, a coordinated turn of
0.1 rad/s with a constant acceleration of 30 m/s2 between
55 and 70 s, and a straight line with a constant velocity
between 70 and 90 s.
The Target Motion Models: In each mode the target
dynamics are modeled in Cartesian coordinates as xk =
Fxk−1+Gvk−1 where state of the target is position, velocity
and acceleration in each of the two Cartesian coordinates (x
and y). Thus xk is of dimension 6 (nx=6). Three models are
considered in the following discussion. The system matrices
F and G are defined as

F =

[
Fb 0 0
0 Fb 0
0 0 Fb

]

G =

[
Gb 0 0
0 Gb 0
0 0 Gb

]
.

• Model 1: nearly constant velocity model with zero
mean perturbation in acceleration:

F 1
b =

[
1 T 0
0 1 0
0 0 0

]

G1
b =

[
T2

2
T
0

]
where T is the sampling period. The standard devia-
tion of the process noise of model M1 is 5m/s2.

• Model 2: Wiener process acceleration (nearly constant
acceleration motion):

F 2
b =

[
1 T T2

2
0 1 T
0 0 1

]

G2
b =

[
T2

2
T
1

]
.

The standard deviation of the process noise of model
M2 is 7.5m/s2.

• Model 3: Wiener process acceleration (model with
large acceleration increments, for the onset and ter-
mination of maneuvers): Here F 3

b = F 2
b and G3

b = G2
b .

The standard deviation of the process noise of model
M3 is 40m/s2.

The initial model probabilities for three targets are identi-
cal: µ1

0 = 0.8, µ2
0 = 0.1 and µ3

0 = 0.1. The mode switching
probability matrix for three targets is also identical and is
given by[

p11 p12 p13

p21 p22 p23

p31 p32 p33

]
=

[
0.8 0.1 0.1
0.1 0.8 0.1
0.3 0.3 0.4

]
.

The Sensors: Two radar sensors, one located at (0,0)m
and the other at (0, 12000)m in Cartesian coordinate sys-
tem, are used to obtain the measurements. The measure-
ments are range and azimuth. The range and azimuth

transformations, respectively, are given by

r = (x2 + y2)1/2, a = tan−1(y/x).

The measurement noise wj,l
k for sensor l (l = 1, 2) is as-

sumed to be zero-mean white Gaussian with known co-
variance matrices R1 = diag[400m2, 49mrad2] and R2 =
diag[400m2, 49mrad2]. The sampling interval is T = 1s.
and it was assumed that the probability of detection PD =
0.98 for each sensor. But for evaluation of cost function
with the scheduling algorithm, the probability of detection
was assumed to be PD = 1.0 for each sensor.
The Clutter: For generating false measurements in sim-
ulations, the clutter was assumed to be Poisson distributed
with expected number of λ = 100 × 10−6/m mrad for each
sensor. These statistics were used for generating the clut-
ter in all simulations. However, a nonparametric clutter
model was used for implementing all the algorithms for tar-
get tracking.
Other Parameters: The gates for setting up the vali-
dation regions for the sensor were based on the threshold
γ = 16 [1],[8]. With the measurement vector of dimension
2, this leads to a gate probability PG = 0.9997 (see [1, p.
56]).

Simulation Results: The results were obtained from
100 Monte Carlo runs for state estimation based on actual
measurements. Furthermore, N = 100 in (13), i.e. for ran-
dom sampling we used 100 samples at each time-step. Fig.
1 shows the true trajectory of the target. Fig. 2 shows
the RMSE (root mean-square error) for the filtered posi-
tion estimate for the target with one-time-step scheduling
and no-scheduling (either sensor 1 for all times or sensor 2
for all times). It is seen from Fig. 2 that the overall track-
ing performance has been improved after scheduling. Fig.
3 shows the RMSE for the filtered position estimate for the
target with two-time-step scheduling and no-scheduling. It
is seen from Figs. 2 and 3 that increasing the time-steps
from one to two does not yield any improved performance
at the onset of maneuvers; rather, the performance is de-
graded around the onset of maneuvers. This is so because
the target trajactory does not necessarily follow our three
target motion models with the specified transition proba-
bilities. Therefore, pseudo-state/measurement generation
via random sampling does not necessarily reflect the true
target motion. This discrepancy between the true state and
the pseudo-state worsens with increasing time-steps.

Nevertheless, short-term scheduling (1-step) does provide
significant performance gains relative to fixed sensor assign-
ment. Note the increase in error at the onset of maneuvers.

5. CONCLUSIONS

We proposed a new sensor scheduling algorithm for a highly
maneuvering target tracking application. In the proposed
scheduling algorithm, under the constraint that only one
sensor may be used at any time step, we first predict
the expected cost one or multiple time steps ahead as a
function of the candidate sensor scheduling sequences, and
then pick the sequence that minimizes an expected per-
formance metric. We used a random sampling approach
coupled with switching multiple kinematic models for tar-
get motion, to generate future (pseudo-)states and (pseudo-
)measurements which allows computation of the relevant
performance metric. Tracking of highly maneuvering tar-
get is achieved by an effective suboptimal filtering algorithm
based on interacting multiple model (IMM) filtering ap-
proach combined with probabilistic data association (PDA)
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technique and the proposed sensor scheduling scheme. The
proposed algorithm was illustrated via a simulation exam-
ple involving two geographically distributed radar sensors.
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Figure 1. Target trajectory.
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Figure 2. Root mean-square error (RMSE) in position for
IMM/PDAF with 1-time-step scheduling and without schedul-
ing.
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Figure 3. Root mean-square error (RMSE) in position for
IMM/PDAF with 1-time-step scheduling and without schedul-
ing.
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