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ABSTRACT
We consider universal decentralized estimation of a noise-cor-

rupted signal by a bandwidth constrained sensor network with a

fusion center (FC). We show that in a homogeneous sensing en-

vironment and under a bandwidth constraint of 1-bit per sample

per node, there exist universal decentralized estimation schemes

(DES) with a mean squared error (MSE) decreasing at the rate

1/K, where K is the total number of sensors. We extend such 1-

bit decentralized estimators to the case of inhomogeneous sensing

environment, and propose quantization and transmission power

control strategies for local sensors in order to minimize the to-

tal consumed sensor energy while ensuring a given MSE perfor-

mance. We also design a DES for the joint estimation of a vector

source based on its noisy and linearly distorted observations, and

show that to achieve a MSE within a factor of 2 away from the

best linear unbiased estimator (BLUE), the local message length

has a nice form of being the channel capacity of “a virtual AWGN

channel” from “nature” to each local sensor.

1. INTRODUCTION

A wireless sensor network (WSN) consists of a large number of

geographically distributed nodes, each with finite battery power

and limited capability in computation, communication and mobil-

ity. When properly programmed and networked, sensor nodes in

a WSN can cooperate to yield significant signal processing capa-

bility with unprecedented robustness and versatility, thus making

WSN an attractive low-cost technology for situation awareness ap-

plications such as environmental monitoring, smart factory instru-

mentation, military surveillance, precision agriculture, intelligent

transportation and space exploration, to name a few.

Apart from power and bandwidth limitations, distributed sig-

nal processing with a WSN differs from the traditional signal pro-

cessing framework in several important aspects. First, observation

data in a WSN is located at different nodes across the network.

Secondly, the parametric data model used and the knowledge of

sensor noise distributions are not easy to characterize, especially

for applications in a dynamic sensing environment. Third, sensor

nodes in a WSN can be either static or mobile, and the inter-sensor

communication can be either peer to peer (as in ad hoc WSN), or

restricted to unidirectional with a common destination called the

fusion center (FC). Lastly, WSN size and topology may change

dynamically.
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The problem of decentralized estimation has been studied first

in the context of distributed control [1] and tracking [9], later in

data fusion [2, 7], and most recently in wireless sensor networks

[8]. Among these studies, the prevailing assumption has been that

the joint distribution of the sensor observations is known, with

some also making the additional assumption that the communica-

tion links can transmit real values and are distortionless. Our work

differs from these studies in that it requires neither the knowledge

of noise distributions nor the use of a training sequence except ei-

ther sensor observation range, or first/second noise moments. In

other words, the DESs derived in this paper is universal. More-

over, these schemes have small bandwidth requirement of either 1

bit or a small number of bits per sensor per node. A main objective

of this paper is to deal with the signal processing aspect of sensor

network research in which the main design objectives are perfor-

mance, bandwidth/power efficiency, scalability and robustness to

changes in the network or environment.

2. DES IN HOMOGENEOUS ENVIRONMENT

To understand how the signal processing capability of a WSN

scales with its size, we consider a generic decentralized parameter

estimation problem under bandwidth constraints [4]. Specifically,

suppose a set of K distributed sensors and a fusion center (FC)

wish to cooperate to estimate an unknown parameter θ. Let the

sensor observations be described by

xk = θ + nk, k = 1, 2, ..., K, (1)

where the sensor noise variables {nk : k = 1, 2, ..., K} are as-

sumed to be additive, zero mean, spatially uncorrelated, but other-

wise unknown. For simplicity, we further assume that nk and θ are

scalar, real and bounded to a known interval [−U, U ]. It follows

that the observations xk ∈ [−2U, 2U ], for all k.

If the FC is given all the data samples {xk : k = 1, 2, ..., K},

then it can estimate θ using the standard sample mean estimator

(also known as BLUE):

θ̄K = (x1 + x2 + · · · + xK)/K.

This estimator is universal since it is independent of the noise pdf.

Its MSE is E(|θ̄K − θ|2) = σ2/K, where σ2 is the noise variance.

This MSE coincides with the Cramer-Rao lower bound (CRLB)

when nk is Gaussian. In other words, if infinite bandwidth is avail-

able so that the sensors can communicate their real-valued obser-

vations to the FC error-free, then the WSN has a signal processing
capability that scales linearly with network size K. Surprisingly,

the same remains true even if we constrain each sensor message to

be one binary bit.
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2.1. A 1-bit Universal DES
Specifically, suppose each sensor compresses its observation xk to

one binary bit mk(xk) and sends the resulting 0-1 valued message

to the FC. (The ensuing results can be easily generalized to the

case of any constant number of bits.) Upon receiving these binary

messages, the FC combines them to produce a final estimate of

θ̄K :

θ̄K = f(m1(x1), m2(x2), ..., mK(xK)), (2)

where f is a real-valued fusion function. We will refer to {f, mk :
k = 1, 2, ..., K} as a decentralized estimation scheme or DES for

short. The problem of decentralized estimation is then to design

the local message functions {mk : k = 1, 2, ..., K} and the fusion

function f so that θ̄K is closest to θ in the MSE sense.

Theorem 2.1 [4] There exists a universal DES that estimates θ
with an MSE not exceeding 4U2/K, even if each sensor sends
only one-bit information to the FC. The DES that achieves this
bound lets 1/2 of the sensors quantize their observations to the
first most significant bit (MSB), 1/4 of the sensors quantize their
observations to the second MSB, and so on.

Since nk is bounded in [−U, U ], it follows that Var(nk) ≤
U2, ∀ k. Hence the (worst case) CRLB for any universal unbi-

ased estimator is U2/K even in the absence of the binary message

constraint. Thus, the worst case performance of the universal DES

described in Theorem 2.1 is within a constant factor of 4 to be-
ing optimal. Notice also that this DES assigns more sensors to

estimate the first MSB of θ than any other bit. This is intuitively

satisfying since getting the first MSB of θ right has the highest

impact on minimizing the final MSE.

2.2. Extension to an ad hoc WSN
One limitation of the aforementioned universal DES is that it re-

quires the use of a FC and the knowledge of network size in order

to specify which sensor should quantize its observation to which

bit. Moreover, this DES is not isotropic since sensors quantize

their observations to possibly different MSB. This makes it dif-

ficult to implement this DES in an ad hoc sensor network where

there is little or no coordination among sensors. To overcome this

difficulty, we have developed the following probabilistic DES [5]:

• With each new sample xk, sensor k flips a coin and, with

probability 1/2, quantizes xk to the first MSB, with proba-

bility 1/4 quantizes xk to the second MSB, and so on. The

quantization outcome (one bit) is sent to all its neighbors.

• Sensor messages are forwarded in the network via an un-

derlying WSN protocol. Each sensor recursively computes

the average of all received binary messages which are dis-

tinct (determined by, say, the sender’s ID), and uses it as an

estimator of θ.

Intuitively, with the aforementioned coin flipping at each sen-

sor node, there will be roughly 1/2 of the sensors in the network

quantizing their observations to the first MSB, about 1/4 of the

sensors in the network quantizing their observations to the second

MSB, and so on. Thus, this probabilistic DES should closely ap-

proximate the MSE performance of the DES in Theorem 2.1. This

is confirmed in the next result.

Theorem 2.2 [5] Suppose the aforementioned probabilistic DES
is implemented in a connected ad hoc WSN. Assume that each
message has a header containing the sender’s ID and eventually

arrives at its destination without error. Then each node in the
WSN produces an unbiased estimate of θ with an MSE of at most
4U2/(n + 1), where n denotes the number of distinct messages
received by this sensor. Compared to the CRLB, this is also within
a constant factor of 4 to being optimal.

The probabilistic DES of Theorem 2.2 is robust, isotropic, and

universal in that all sensors operate identically and independently

of possible changes in network topology or sensor noise pdf.

3. DES IN INHOMOGENEOUS ENVIRONMENTS

Theorems 2.1 and 2.2 both assume that the sensor noise samples

are identically distributed. This assumption may not hold when

sensors have variable quality and the sensing environment is inho-

mogeneous. For example, the sensor closer to the target may have

a higher local SNR than those farther away. Let the noise variance

of the k-th sensor be σ2
k. The classical centralized BLUE estimator

combines the (real-valued) sensor observations linearly to achieve

an MSE of
(∑K

k=1 1/σ2
k

)−1

.

3.1. A Totally Distributed Estimation Scheme
The classical BLUE requires the knowledge of {xk, σ2

k} from each

sensor. Instead, we propose the following universal DES in inho-
mogeneous sensing environment [6]:

• At sensor k, choose

Lk =

⌈
log

2U

σk

⌉
, (3)

and take mk to be the first Lk bits of the binary expansion

of
2U + xk

4U
=

∞∑
i=1

bi2
−i

, where bi = {0, 1}, plus an extra

random bit to make mk unbiased.

• The final estimator at the FC is

θK(mk) =

(
K∑

k=1

22Lk

)−1 K∑
k=1

22Lk2U(2mk − 1). (4)

Theorem 3.1 [6] θK in (4) is an unbiased estimator of θ, i.e.
E(θK) = θ, and θK has an MSE

E
(∣∣θK − θ

∣∣2) <
25

8

(
K∑

k=1

1

σ2
k

)−1

,

which is optimal (up to a factor of 3.125) when compared to the
centralized BLUE estimator.

In the above DES, each sensor only needs to know its own

noise variance. The final fusion (4) is completely determined by

the received messages {mk : k = 1, 2, ..., K}. As expected,

higher quality sensors (i.e., with lower noise) send more bits and

their messages carry more weight at the fusion process.

3.2. Optimal Power Scheduling

In previous sections, we have derived efficient DESs under the as-

sumption that the communication links between the sensors and

the FC are distortionless. Such an assumption can be unrealistic

in practical situations, especially when the power of the sensors
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are limited. In this section, we briefly describe how to extend the

universal DESs to the case where the communication links are cor-

rupted by Additive White Gaussian Noise (AWGN). Our ultimate

goal is to minimize total power consumption per round of estima-

tion, while ensuring a prescribed MSE performance D.

We assume that the channel between sensor k and the FC is

experiencing a path-loss ak = dα
k , where dk is the transmission

distance and α is the pass-loss constant. Sensor k quantizes its

observation to Lk bits, where Lk are to be optimized depending

on target MSE, sensor noise levels and channel gains from sen-

sors to the FC. We consider a practical model assuming that sen-

sors follow a Time Division Multiple Access (TDMA) scheme,

and to minimize the delay of estimation, sensor k adopts adaptive

MQAM of constellation size Lk so that all quantized bits from one

sample can be transmitted by one single channel use. Suppose Pk

is the transmitting power of sensor k (see [3] for details). To min-

imize the L2-norm of P = (P1, P2, . . . , PK), we obtain then the

optimal value of Lk [10]:

Lopt
k = log

⎛
⎝1 +

2U

σk

√(
η0

ak
− 1

)+
⎞
⎠ , (5)

where η0 is a universal constant decided jointly by target MSE,

sensor noise levels and channel gains. The optimal transmission

power for sensor k is given as Pk ∼ ak
σk

√(
η0
ak

− 1
)+

.

When
η0

ak
≤ 1, or ak ≥ η0, we have Lk = 0, and therefore

Pk = 0. Simulation shows that in some cases, a large number of

sensors with bad channel qualities or poor observations shut off.

Numerical examples also show that an energy savings of up to

70% can be saved when compared to uniform quantization strat-

egy in which each sensor generates the same number of bits (see

[10]). The message length formula in (5) is intuitively appealing

as it indicates that the message length should be proportional to

the logarithm of local SNR scaled by channel path gain. This is

in the same spirit as the message length formula in (3) when the

channel is ideal such that a real number can be transmitted without

distortion.

4. EXTENSION TO VECTOR SOURCE ESTIMATION

Previous DESs have assumed that sensor observations are in a fi-

nite range [−2U, 2U ]. In this section, we first design a DES esti-

mating a scalar source when sensor observations are unbounded,

then extend this strategy to estimate vector sources from their noisy

and linearly distorted observations.

4.1. Scalar DES Revisited

We assume that FC has the knowledge of sensor noise variances

{σ2
k : k = 1, 2, . . . , K}. This assumption is realistic when the

source and whole network are stable, so that the quality of obser-

vations at one single sensor does not change fast with time. Once

the sensor noise variances are acquired, they can be used for a large

number of estimation rounds.

The message function mk is then taken as the (randomly roun-

ded) integer part of x′
k = xk/(2σk). The FC weights these mes-

sage functions optimally by the knowledge of noise variances. The

whole scheme is outlined as follows.

• Suppose x′
k = sign(x′

k)(ik + rk), where ik and rk are

the integer and decimal parts of |x′
k| respectively. Then

0 ≤ rk < 1. Construct the message function as

mk(xk, σk) = sign(x′
k)(ik + dk), (6)

where dk is a binary random variable with P (dk = 1) = rk

and P (dk = 0) = 1 − rk .

• The final estimator of θ at the FC is

θK(mk) =

(
K∑

k=1

1

σ2
k

)−1 K∑
k=1

2mk

σk
. (7)

Theorem 4.1 For the DES in (6)–(7), θK is an unbiased estima-
tor of θ, and the MSE

E
(
θK − θ

)2 ≤ 2

(
K∑

k=1

1

σ2
k

)−1

. (8)

Moreover, for all 1 ≤ k ≤ K, the average message length of mk

is not more than 1
2

log(1 + γk) binary bits, where γk = Pθ/σ2
k

with Pθ = E(θ2).

Proof. It is easy to see that E(mk) = E(x′
k) = θ/(2σk) which re-

veals that θK is an unbiased estimator of θ from (7). Also E(mk −
x′

k)2 = E(dk − rk)2 = Var(dk) ≤ 1/4 since dk is a random

variable taking values from {0, 1}. So

E(2σkmk − θ)2 = E(2σkmk − xk)2 + E(xk − θ)2 ≤ 2σ2
k.

Thus (8) follows easily from (7). Next we give an upper bound

of the average length of the integer message function mk. We

know that mk = �x′
k� or �x′

k	, therefore Lk ≈ �log |mk|	 ≤
1 + log |mk| ≈ 1 + log |x′

k| = 1 + log |xk|
2σk

= log |xk|
σk

. The

average length of mk

E (Lk) ≈ E

(
log

|xk|
σk

)
≤ log

(
E (|xk|)

σk

)

= log

(√
E(θ2) + σ2

k

σk

)
=

1

2
log (1 + γk) ,

where we applied the fact that log x is a concave function, and

(E(|xk|))2 ≤ E(x2
k) = E(θ2) + σ2

k. �
If we model the sensing process of a parameter from its source

to sensor observation xk as a discrete time AWGN channel, the

channel capacity is Ck = 1
2

log (1 + γk). The average message

length of mk upper bounded by Ck reveals that the optimal bit as-

signment is decided by the number of “useful” bits contained in

xk, which is the average information flow from the source mea-

sured by channel capacity.

4.2. Joint Estimation of a Vector Source

Suppose the parameter to be estimated is a vector θ = [θ1, θ2, . . . ,
θs]

T . Sensor observations xk are linear version of θ corrupted by

additive noises and are described by

xk = Hkθ + nk, k = 1, 2, ..., K,

where Hk is a matrix with dimension (rk, s). We assume that

noise nk has zero mean and covariance matrix Ck, but otherwise
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unknown. Noises are spatially uncorrelated among sensors. For

simplicity, we assume Pθ = E(θθT ) = Is. Otherwise we can

replace Hk by H′
k = HkP1/2

θ , and let θ′ = P−1/2
θ θ which im-

plies Pθ′ = Is. Again, we suppose FC knows {(Hk, Ck) : k =
1, 2, . . . , K}.

If sensors can perfectly send the observations {xk : k =
1, 2..., K} to the FC, the FC can perform the BLUE estimator min-

imizing the MSE as follow

θK(x) =

(
K∑

k=1

HT
k C−1

k HK

)−1 K∑
k=1

HT
k C−1

k xk. (9)

Let ε(x) = θK(x) − θ. A simple calculation shows that this

estimator has an MSE covariance matrix

E
(
ε(x)ε(x)T

)
=

(
K∑

k=1

HT
k C−1

k HK

)−1

.

Theorem 4.2 To perform the estimator (9) at the FC, from each
sensor k, the number of real messages required to be transmitted
is dk = rank(HT

k C−1
k Hk) ≤ rk, where rk = dim(HT

k C−1
k Hk).

Proof. Consider eigen-decomposition (HT
k C−1

k HK)
1
2 = UkΛkUT

k

where Λk = diag(λk,i : i = 1, 2, . . . , rk). Define

x′
k = UkΛ

−1
k HT

k C−1
k xk = sk + wk

where sk = ΛkUT
k θ and wk = UkΛ

−1
k HT

k C−1
k nk. Suppose x̄′

k

is the vector containing the first dk components of x′
k, and the

remaining rk−dk components are filled up by 0, then the estimator

θK(x) =

(
K∑

k=1

HT
k C−1

k HK

)−1 K∑
k=1

UkΛkx̄′
k. (10)

is equivalent to (9). �
We can see that E(sksT

k ) = ΛkUT
k E(θθT )UkΛk = Λ2

k and

E(wkwT
k ) = UkΛ

−1
k HT

k C−1
k E(nknT

k )C−1
k HkΛ

−1
k UT

k = Irk . Th-

erefore, if we let γk,i, 1 ≤ i ≤ rk be the SNR of the i-th compo-

nent of x′
k, then γk,i = λ2

k,i. In addition, all components of x′
k are

mutually independent, and γk,i = 0 for all dk + 1 ≤ i ≤ rk.

From Theorem 4.2, we know that FC is only interested in x̄′
k.

But x̄′
k can not be transmitted as real values, so we quantize the first

dk non-zero components of x̄′
k independently using the strategy in

Section 4.1 to get m̄k, and mk is m̄k adding rk − dk components

of 0. Then E
(
(mk,i − x̄′

k,i)
2
) ≤ 1 for all 1 ≤ i ≤ rk. Due to the

independent property of quantizations, we obtain

E((x̄′
k − mk)(x̄′

k − mk)T ) � Irk . (11)

The fusion function is the same as (10) except that x̄′
k is replaced

by mk, i.e.

θK(m) =

(
K∑

k=1

HT
k C−1

k HK

)−1 K∑
k=1

UkΛkmk. (12)

Theorem 4.3 Let ε(m) = θK(m)− θ. For the estimator (12), its
MSE covariance matrix

E
(
ε(m)ε(m)T

)
≺ 2

(
K∑

k=1

HT
k C−1

k HK

)−1

. (13)

Moreover, for all 1 ≤ k ≤ K, the average message length of mk

is approximately 1
2

log det(I + HT
k C−1

k Hk) binary bits.

Proof. The proof of (13) follows from (11) and the fact that

E(mk) = x′
k. Moreover, let Lk,i be the length of message mk,i,

and Lk be the total number of bits in mk. Using the message length

bound for scalar case in Theorem 4.1, we have

E(Lk) =

dk∑
i=1

Lk,i ≈
dk∑
i=1

(
1

2
log (1 + γk,i)

)

=
1

2
log

dk∏
i=1

(1 + γk,i) =
1

2
log det(I + HT

k C−1
k Hk),

where we have used the fact that γk,i = λ2
k,i, and λ2

k,i are the

eigenvalues of HT
k C−1

k Hk. �
The quantity Ck = 1

2
log det(I + HT

k C−1
k Hk) is the Shan-

non capacity of a “virtual AWGN channel” from nature to sensor

k with channel given by Hk, noise covariance matrix Ck and input

power Pθ = Is. The fact that Ck is channel capacity nicely indi-

cates that the message length is decided by the number of “useful”

bits contained in xk = Hkθ + nk.
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