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ABSTRACT

The problem of detecting changes from data collected from a large-
scale randomly deployed two dimensional sensor field is consid-
ered. Under a nonparametric change detection framework, we pro-
pose detection algorithms using two measures of change. Theoret-
ical performance guarantee is derived from the Vapnik-Chervonenkis
theory. By exploiting the structures of the search domain, we de-
sign a suboptimal recursive algorithm to detect the area of largest
change which, for M sample points, runs in time O(M2 log M)
(compared to an O(M4) required for a straightforward exhaustive
search). The lost of performance diminishes as M increases.

Keywords: Non-parametric change detection, Sensor Networks,
Detection and estimation algorithms.

1. INTRODUCTION

We are interested in detecting certain phenomenal change in a
large-scale randomly deployed sensor field. For example, sensors
may be designed to detect certain chemical components. When
the sensor measurement exceeds certain threshold, the sensor is
“alarmed”. The state of a sensor depends on where it resides; sen-
sors in some area are more likely to be in the alarmed state than
others. We are not interested in the event that certain sensors are
alarmed. We are interested instead in whether there is a change in
the geographical distribution of alarmed sensors from data collec-
tions at two different time. Such a change in distribution could be
an indication of abnormality.

First data collection Second data collection

Fig. 1. Reported alarmed sensors (red) in two collections.

We assume that some (not necessarily all) of the alarmed sen-
sors are reported to a fusion center, either through the use a mo-
bile access point (SENMA [1]) or using certain in-network rout-
ing scheme. As illustrated in Fig. 1, suppose that the fusion center
obtains two reports of the locations of alarmed sensors from two
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separate data collections. In the ith report, let Si be the set of
alarmed sensor drawn independently according to some distribu-
tion Pi. The identities and the number of alarmed sensors in the
two reports may not match. The change detection problem consid-
ered in this paper is one of nonparametric hypotheses testing:

H0 : P1 = P2 vs. H1 : P1 �= P2.

where we make no prior assumptions about the data generating
distributions Pi. We may also be interested in locating areas with
significant changes.

Related Work The problem of change detection in sensor field
has been considered in different (mostly parametric) settings [2,3].
The underlying statistical problem considered in this paper be-
longs to the category of two-sample nonparametric change detec-
tion. There is a wealth of nonparametric change detection tech-
niques for one-dimensional data set in which data can be ordered
uniquely, see [4] and references therein. Most of these techniques
do not have natural generalizations to the two dimensional sensor
network applications. The classical Kolmogorov-Smirnov two-
sample test [4] does apply to the two-dimension sensor problem,
but it does not provide the location where changes may occur. In
a way, the methods presented in this paper generalize the idea of
Kolmogorov-Smirnov test to a different collection of measurable
sets using more general forms of distance measures, which allows
the formulation of change estimation problem [5].

Summary of Results and Organizations In this paper we present
a nonparametric change detection and estimation algorithm based
on an application of Vapnik-Chervonenkis Theory [6]. The basis
of this approach is outlined in [5] where we have provided a math-
ematical characterization of changes in distribution. Our focus in
this paper is on the use of a relative measure of change and a low
complexity algorithm applicable to large scale sensor networks.

We begin a formulation of the change detection problem for
sensor networks in Section 2. We then present in Section 3 results
that establish a theoretical guarantee of performance. We consider
two distance measures in this paper. The first is the so-called A-
distance (also used in [5]) that measures the maximum change in
probability among a collection A of measurable sets. The second
is a relative distance measure—a variation from that in [5]—for
cases when the change in probability is concentrated in areas of
small probability weight.

Next we derive in Section 4 a practical algorithm applicable
to large scale sensor networks. The key to the applicablity of VC
Theory is reducing the search in a possibly uncountable collection
A of sets (e.g., planer disks) to one in a finite sub-collection H(S)
(a function of the observations S = S1

⋃
S2) without affecting

the performance. If M = |S1 ∪ S2| is the total number of data
points in two collections, in [5] we have shown that the exhaus-
tive search among the collection of all planer disks has complexity
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O(M4). We present a suboptimal search strategy that has com-
plexity O(M2 log M). There is a loss of performance, however,
but such a loss diminishes as the number of samples increases.

Simulation results are provided in Section 5 in which we com-
pare the performance when two different distance metrics are used.

2. THE PROBLEM STATEMENT

We consider two probability measures P1 and P2 on the same
measurable space X where (X,F , Pi) models the ith random col-
lection of alarmed sensors1. Denote Si as the set of locations of
alarmed sensors in the ith collection and S = S1

⋃
S2. We as-

sume that, in each collection, alarmed sensors are drawn i.i.d. ac-
cording to Pi and the two drawings are independent. Note that the
number and the identities of the collected alarmed sensors may be
different in each collection.

We introduce a collection A ⊆ F of measurable sets to model
the set of geographical areas in which, for practical purposes, events
of interest are observed from the sensor field. The collection A
does not have to be countable and is part of the algorithm design.
For example, we may be interested in the number of alarmed sen-
sors in a circle centered at some location s in X with some radius
r. If we define A as the collection of all disks in X , for some
applications, it may be reasonable to focus on the probabilities of
events inA rather than those inF of the original probability space.
The choice of A is subjective, and it depends on the application at
hand. Other geometrical shapes such as rectangles, and stripes are
considered in [7].

Given the probability spaces (X,F , Pi) and the collection
A ⊆ F , we are interested in whether there is a change in prob-
ability measure on A.

3. PERFORMANCE GUARANTEE

To describe “change”, we need some notion of distance between
two probability distributions. In this paper, we will be consider
two distance measures.

A-distance and empirical A-distance [5] Given probability spaces
(X,F , Pi) and a collection A ⊆ F , the A-distance between P1

and P2 is defined as

dA(P1, P2) = sup
A∈A

|P1(A) − P2(A)|. (1)

The empirical A-distance dA(S1, S2) is similarly defined by re-
placing Pi(A) by the empirical measure

Si(A)
∆
=

|Si

⋂
A|

|Si|
(2)

where |Si ∩ A| is the number of points in both Si and set A.

The A-distance does not take into account the relative signifi-
cance of the change. For example, one could argue that changing
the probability of a set from 0.99 to 0.999 is less significant than
a change from 0.001 to 0.01; the latter amounts to a ten-fold in-
crease whereas the former represents an increase of about 1%. For
applications in which small probability events are of interests, we
introduce the following notion of relative A-distance that takes the
relative magnitudes of a change into account.

1The notation (X,F , Pi) is standard: X is the space, F the σ-algebra,
Pi the probability measure.

Relative and Empirical Relative A-distance Given probability spaces
(X,F , Pi) and a collection A ⊆ F , the relative A-distance be-
tween P1 and P2 is defined as

φA(P1, P2) = sup
A∈A

|P1(A) − P2(A)|√
P1(A)+P2(A)

2

. (3)

The empirical relativeA-distance is defined similarly by replacing
Pi(A) with the empirical measure defined in (2).

The above definition is slightly different from that used in [5].
The proof that the above relative A-distance is indeed a metric
follows [8]. With a properly chosen distance measure, we can now
specify the class of detectors considered in this paper.

Detector δ(S1, S2; ε): Given two collection of samples S1 and
S2, drawn i.i.d from probability distributions P1 and P2 respec-
tively, and threshold ε ∈ (0, 1), for hypotheses H0 vs. H1, the
detector2 using the A-distance is defined as

δdA
(S1, S2; ε) =

{
1 if dA(S1, S2) > ε
0 otherwise

(4)

The detector δφA
(S1, S2; ε) using the relative A-distance is de-

fined the same way by replacing dA(S1, S2) by φA(S1, S2).

We now provide a theoretical guarantee of the performance by
deriving bounds on the miss detection and the false alarm proba-
bilities, both in near exponential form.

Theorem 3.1 Given probability spaces (X,F , Pi) and a collec-
tion A ⊆ F , let Si ∈ X be a set of n samples drawn according
to Pi. The false alarm probabilities for the detectors defined in (4)
are bounded by

PF (δdA
) ≤ 8(2n + 1)de−nε2/32 (5)

PF (δφA
) ≤ 2(2n + 1)de−nε2/4 (6)

where d is the VC-dimension3 of A.
Furthermore, if dA(P1, P2) > ε and φA(P1, P2) > ε, the

miss detection probabilities satisfy, respectively,

PM (δdA
, P1, P2) ≤ 8(2n + 1)de−n[dA(P1,P2)−ε]2/32

(7)

PM (δφA
, P1, P2) ≤ 16(2n + 1)de−n[φA(P1,P2)−ε]2/16

(8)

Proof: See Appendix. �

Note first the decay rates of the error probabilities are differ-
ent when the two different distance measures are used, with the
relative distance measure providing some gain in the decay rate of
error probability. Next, the above theorem also provides a way of
deciding the detection threshold ε for a particular detection crite-
rion. For example, the threshold of the Neyman-Pearson detection
for a given size α can be obtained from the bounds on false alarm
probabilities. Finally, notice the role of VC dimension d in the er-
ror exponent; it appears that d, as a coefficient of ln n, is a minor
factor compared with the distance between two probability mea-
sures.

2We use the convention that the detector gives the value 1 for H1 and
0 for H0.

3The VC-dimension of A is defined as the cardinality of the largest set
S shattered by A [9].
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4. A LOW COMPLEXITY DETECTOR

The detectors given in (4) are based on the search for maximum
distance between empirical probabilities on the (uncountable) col-
lection of measurable sets A. To implement such a detector, it is
necessary to reduce, based on the observation data S, the search in
A to a search in a finite collection H(S). The choice of A and that
of H(S) dictate the complexity and the performance.

For the collection of disks4 considered in this paper, it can be
shown that the exhaustive search algorithm has a cost in the order
of O(M4) where M = |S| is the total number of data samples
collected. This complexity is still prohibitive for large scale net-
works. The algorithm presented next reduces the complexity to
O(M2 log M).

Let A be the collection of two dimensional disks. Given the
samples S = S1

⋃
S2, consider the finite collection of sample-

centered disks HCD(S) ⊂ A defined by

HCD(S)
∆
= {D′(si, sj) : si, sj ∈ S} (9)

where D′(si, sj) is the disk with si at the center and sj on the
boundary. Note that this collection of disks contains M sub-collections,
each has one sample at the center and a nested disks defined by the
rest of samples in the disk. This particular structure allows the de-
velopment of the following recursive algorithm that calculates the
distance between two empirical probability distributions.

The recursive search for maximum change goes as follows.
Fix an si and define

Fi(j)
∆
= S1(D

′(si, sj)) − S2(D
′(si, sj)) (10)

Fi(j) is the change in the empirical probability of D′(si, sj). First
sort the sample points into increasing order sj1 , sj2 , . . . according
to their distance to si

5, and then computing Fi(jk) recursively by
the update

Fi(jk) =

{
Fi(jk−1) + 1

|S1|
if sjk

∈ S1

Fi(jk−1) −
1

|S2|
if sjk

∈ S2

where k = 1, 2, . . . , M − 1. Next we compute

j∗(i) = arg max
j

|Fi(j)|. (11)

The optimal disk inHCD, for fixed center si, is given by D′(si, sj∗(i)),
and the maximum difference for disks at center si is |Fi(j

∗(i))|.
The search repeats for all possible si. Finally, we find the maxi-
mum among |Fi(j

∗(i))|, ∀i, i.e.

imax = arg max
i

|Fi(j
∗(i))|. (12)

Then the optimal disk in HCD is given by D′(simax , sj∗(imax)), and
the maximum difference is |Fimax(j

∗(imax))|.
If φA(S1, S2) is needed, it is easy to see that, following the

same steps as computing Fi(jk), the empirical probabilities
Sk(D′(si, sj)), (k = 1, 2) can be computed, so can φA(S1, S2).

The complexity of the proposed algorithm, compared with ex-
haustive search, is reduced to O(M2 log M). The dominating
term is the sorting of the sample points according to their distances

4Other choices are considered in [7].
5This sort is at the cost of O(M log M).

to a certain sample point, which takes O(M log M) for each cen-
ter, and is repeated for M centers. Furthermore, this algorithm can
also be modified for other distance metrics that are based on the
counting of samples.

It should be noted that the reduction of complexity does come
with a cost. The specific choice of HCD does not guarantee opti-
mality because HCD is not complete [5] with respect to A in the
sense that some type of disks are missing. If, however, probability
measures Pi are such that that any disk with a positive area has
positive probability, then the loss of performance vanishes asymp-
totically. Specifically, consider a disk and an arbitrary neighbor-
hood of its center, the strong law of large numbers guarantees that
as sample size goes to infinity, there is a sample within this neigh-
borhood of the center almost surely. This implies that the proposed
algorithm is asymptotically optimal for search in planar disks.

5. SIMULATION

We simulate the case when the distribution of alarmed sensors is a
mixture of 2D uniform distributions, one on a s × s square D and
the other centered at x0 ∈ R

2 with radius r. Specifically, the PDF
of the 2D random vector x is given by

px0
(x) =

⎧⎨
⎩

p
πr2p+(s2−πr2)q

x ∈ D, ||x − x0|| ≤ r
q

πr2p+(s2−πr2)q
x ∈ D, ||x − x0|| > r

0 otherwise

where x0, p, q, and r are parameters, 0 < r << s and 0 ≤ q <
p ≤ 1. We are interested in detecting whether there is a change
in the center of the distribution. The algorithm, of course, is not
given the form of P .

We consider a Neyman-Pearson setup in which the size α of
the detector is prescribed. From Theorem 3.1, we can choose
(n, ε) such that

ε ≥

√
32

n
log

8(2n + 1)d

α
for δdA

(13)

ε ≥

√
4

n
log

2(2n + 1)d

α
for δφA

. (14)

The decision threshold ε(n) is a measure of detector sensi-
tivity. For a fixed detector size, the smaller the ε(n), the higher
the detection power. To this end, the relative distance metric pro-
vides approximately three times improvement in detection sensi-
tivity. Fig 2 shows the miss detection probability as a function
of sample size. Here we observe a sharp drop in miss detection
probability, indicating a threshold value on the number of samples
required for the exponential decay of miss detection error. Such
a phenomenon is indeed predicted by Theorem 3.1 in which there
are minimum sample size n∗

d for δdA
and n∗

φ for δφA
such that,

from the exponents of the miss detection probability (7-8)

ε(n∗
d) < dA(P1, P2), ε(n∗

φ) < φA(P1, P2).

It turns out that n∗
d and n∗

φ calculated above match well with the
threshold in the simulation shown in Fig 2.

6. CONCLUSION

We presented a nonparametric approach to change detection in a
2D random field. As a by product, the detection algorithm also
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Fig. 2. Miss detection probability as a function of the sample size
(simulation results). Here p = 0.98, q = 0.02, r = s/12.

gives an estimate of the location of changes. We provided a theo-
retical characterization of the miss detection and false alarm prob-
ability in the form of exponential decay of error probabilities. We
also presented a suboptimal recursive algorithm that reduces the
complexity from O(M4) to O(M2 log M). Such a reduction al-
lows the use of of a large number of samples to improve the detec-
tion performance.

Words of caution are now in order. Bounds on error proba-
bilities derived here are usually not tight, and the number of sam-
ples required for the derived bounds may need to be very large.
Such shortcomings come with the advantage of not requiring prior
knowledge of the probability distributions.

APPENDIX: PROOF OF THEOREM 3.1

We first prove the theorem for detectors using the A-distance met-
ric dA(S1, S2) = supA∈A |S1(A)−S2(A)|. From [10], we have

Pr{∃A ∈ A, ||P1(A) − P2(A)| − |S1(A) − S2(A)|| > ε}

≤ 8(2n + 1)de−nε2/32 (15)

Under H0, P1 = P2, and the false alarm probability satisfies

PF (δ) = Pr{dA(S1, S2) > ε;H0}

= Pr{∃A ∈ A, |S1(A) − S2(A)| > ε;H0}

= Pr{∃A ∈ A, ||P1(A) − P2(A)|

−|S1(A) − S2(A)|| > ε;H0}

≤ 8(2n + 1)de−nε2/32 (16)

where inequality (16) follows from (15).
For the miss probability, let A∗ = arg supA∈A |P1(A) −

P2(A)|.

PM (δ, P1, P2) = Pr{dA(S1, S2) ≤ ε; P1, P2}

≤ Pr{|S1(A
∗) − S2(A

∗)| ≤ ε; P1, P2}

≤ Pr{||P1(A
∗) − P2(A

∗)|

−|S1(A
∗) − S2(A

∗)||

≥ ||P1(A
∗) − P2(A

∗)| − ε| ; P1, P2}

≤ 8(2n + 1)de−n[|P1(A∗)−P2(A∗)|−ε]2/32

(17)

Now consider relative distance. The proof for relative distance
metric goes line by line as that for the non-relative metric, replac-
ing inequality (15) with the following results from [10],

P 2n(φA(S1, S2) > ε) ≤ 2(2n + 1)de−nε2/4 (18)

P 2n[|φA(P1, P2) − φA(S1, S2)| > ε]

≤ 16(2n + 1)de−nε2/16 (19)

We have

PF (δ) ≤ 2(2n + 1)de−nε2/4 (20)

PM (δ, P1, P2) ≤ 16(2n + 1)de−n[φA(P1,P2)−ε]2/16 (21)
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