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ABSTRACT

In this work we consider the problem of detection in a sensor net-
work with censored transmission. The motivation for this is the
improvement of the energy efficiency by means of allowing just
positive detection transmission. Both, Bayes and NP tests are de-
veloped and the performance of NP test is studied using large de-
viation bounds on the error probability. We also show that these
bounds using the KL divergence between the probability density
functions of the observations under each hypothesis might be used
as a criteria for determining the optimal exploration area or even
the optimal strategy for energy efficiency. The “spanish hat” model
for the probability of detection is used to example the performance
of the proposed bound.

1. INTRODUCTION

In [1], the problem of binary distributed detection in the context of
large-scale, dense sensor networks, was considered. The detection
is based on an identical local binary detection rule, and the prob-
ability that a sensor detects a target is modeled by a function pd

that depends on the distance between the sensor and the target. In
this paper we want to extend that work by considering censoring
schemes to improve the energy efficiency of the detection process.
Previously proposed censoring schemes (like [2]) are not applica-
ble to our setting because we do not restrict local decisions to be
based on a likelihood ratio test. Instead, we propose to use a simple
censoring scheme in which only the sensors that detect the target
transmit their position to the fusion center.

Following this approach, we analyze the simple problem of de-
tecting a target knowing its position under both Bayes and Neyman-
Pearson (NP) tests. For obtaining the log-likelihood ratio (LLR),
we will first model the number of sensors that after detecting a
target, successfully transmit their position to the fusion center.
The performance of the NP test is analyzed using large deviation
bounds on the error probability and a parametric approximation of
pd. We also provide, using these bounds, rules for designing the
test for the exploration of a given spatial area.

The paper is organized as follows. In Section 2 we state the
problem we are facing at and we introduce the basic notation of
the paper. In Section 3, we present the modeling of the number
of sensors included in the location task. Section 4 is devoted to
the derivation of both NP and Bayes tests. Section 5 presents the
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bounds on error probability for the proposed test, Section 6 shows
an example, and Section 7 concludes the paper with a discussion
of the presented results.

2. PROBLEM STATEMENT AND NOTATION

We consider that � sensors are randomly deployed over a region
D ∈ IR2, of area S, following a uniform distribution. Each sensor
applies the same binary detection rule, not necessarily based on a
LLR test. The probability of a positive detection (Y = 1) in a sen-
sor located at coordinates x when a target is present at coordinates
xt is denoted as pd(xt, x, α), where α is the probability of false
alarm (PFA) of the sensor when no target is present. pd(xt, x, α)
is a non-increasing function of the euclidean distance between x
and xt, it is determined by the underlying physics of the sensing
process and the kind of the detection rule, and it is assumed to be
known (more details can be found in [1]).

Given D and xt, we define two hypothesis, H0 or null hypoth-
esis for the case when no target is present, and H1 or alternative
hypothesis for the case when a target is present.

• Under hypothesis H0, the joint pdf of X and Y (the result
of the local detection process) is

fX ,Y |H0(x, y|H0) =
1

S
(α δ[y − 1] + (1 − α) δ[y])

where δ is the Kronecker function.

• Under hypothesis H1, the joint pdf of X and Y is

fX ,Y |H1(x, y|H1) =
1

S
(pd(xt, x, α) δ[y − 1]

+ (1 − pd(xt, x, α)) δ[y])

At every sensing instant (automatic or beacon driven), each
sensor independently decides to sense with probability ps. We
denote �s the number of sensors that sense. At the fusion center
we receive only a set of �t ≤ �s coordinates {xi, i = 1, · · · , �t}
that corresponds to the positions of the sensors that have detected
the target and that have transmitted successfully.

The information that is not available at the fusion center is: 1)
the number of sensors that, after sensing, does not detect the target,
�nd; 2) the positions of the above sensors, {xnd

i , i = 1, · · · , �nd};
3) the number of sensors that have failed the transmission of a
positive detection, �e, and; 4) the positions of the above sensors,
{xe

i , i = 1, · · · , �e}.
Moreover, we will denote by �s = �t + �e + �nd.
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3. MODELING THE NUMBER OF SENSORS

We start by modeling the number of active sensors, �s. Assuming
a sensing probability ps, the number of sensors �s that sense can
be modeled as a random variable Ls with a binomial conditional
probability density function

fLs|L(�s|�) =

(
�

�s

)
p�s

s (1 − ps)
�−�s ,

for 0 ≤ �s ≤ �, �s ∈ Z, where L denotes the random variable
modeling the number of sensor in the region D.

Now lets proceed with the modeling of the number of sen-
sors that are detecting a target. First we consider the influence of
wireless transmission plus the Medium Access Control (MAC). To
avoid an unnecessary notation complexity, we will group the influ-
ence of all the sources of errors involved into the transmission into
a single probability of error of a message (or a packet), pe. Al-
though in some cases the consideration of a single probability of
error does not lead to a realistic analysis of the energy efficiency
of the network (mainly if retransmission are allowed in the MAC)
in most other it will provide the exact solution.

Assuming that the expected probability of detection of a sen-
sor in the region D, denoted as pD , and the probability of error in
the transmission, pe, are independent, the probability of a success-
ful transmission for a sensor is

pt = (1 − pe) · pD.

Given the number of sensors that effectively sense, �s, the number
of sensors that detect and correctly transmit can also be modeled
as a random variable, Lt, with a binomial distribution,

fLt|Ls(�t|�s) =

(
�s

�t

)
p�t

t (1 − pt)
�s−�t ,

for 0 ≤ �t ≤ �s, �t ∈ Z.
We will provide the expressions for pD , which depend on the

underlying hypothesis, at the end of Section 4. In the following,
we will denote by pt|i and pD|i the probability of a successful
transmission and the average probability of detection of a sensor
in area D, respectively, under hypothesis Hi, i ∈ {0, 1}.

Using this notation, the conditional distribution of the number
of sensors �t that, after sensing, detect a target and transmit their
position to the fusion center, given the total number of sensors, �,
and the hypothesis Hi, is

fLt|L,H(�t|�, Hi) =

�∑
�s=�t

(
�s

�t

)
p�t

t|i
(
1 − pt|i

)�s−�t

(
�

�s

)
p�s

s (1 − ps)
�−�s .

for 0 ≤ �t ≤ �, �t ∈ Z.

4. HYPOTHESIS DETECTION PROBLEM

At the fusion center, only positions of the sensors that, after sens-
ing, detected a target and had a successful transmission, {xi}i=1,··· ,�t ,
are known. To derive a LLR-based test, first of all, we have to de-
termine the probability density function of the observation under
each hypothesis (H0 a target is not present, H1 a target is present).

Initially, we consider the positions to be the only significant obser-
vations. Therefore, we need the distribution of the random variable
X modeling the positions

x = [x1, · · · , x�]
T .

Without lack of generality, and for the sake of simplifying the fol-
lowing notation, we consider that in a general case these positions
are ordered as follows

x = [x1, · · · , x�t , x
e
1, · · · , xe

�e
, xnd

1 , · · · , xnd
�nd

]T .

When all sensor positions are known, and independence between
sensors is assumed, the distribution of the random variable X mod-
eling the positions, conditioned to each hypothesis is

fX|H(x|Hi) =

�t∏
i=1

fX|H,Y (xi|Hi, 1)

·
�e∏

j=1

fX|H,Y (xe
j |Hi, 1)

�nd∏
k=1

fX|H,Y (xnd
k |Hi, 0).

However, in the problem we are facing, only the positions
{xk}k=1,··· ,�t are known at the fusion center. To circumvent this
problem, we model the observations as the set of sensor positions
along with the number of successful received lectures, i.e., the ob-
servations are modeled by a random variable Θ, modeling the fol-
lowing vector

θ = [x1, · · · , x�, �t]
T .

The joint probability density function of the observations is now
given by

fΘ|H(θ|Hi) =

�t∏
i=1

fX|H,Y (xi|Hi, 1)
fLt|L,H(�t|�, Hi)

S�−�t
.

By relying on the probability of detection function, pd(xt, xi, α),
it is straightforward to obtain

fX|H,Y (xi|H1, 1) =
pd(xt, xi, α)∫

D pd(xt, x, α) dx
, (1)

and

fX|H,Y (xi|H0, 1) =
1

S
. (2)

Therefore, now we can obtain

fΘ|H(θ|H1) =

�t∏
i=1

pd(xt, xi, α)∫
D pd(xt, x, α) dx

fLt|L,H(�t|�, H1)

S�−�t
,

and

fΘ|H(θ|H0) =
1

S�
· fLt|L,H(�t|�, H0).

Based on these expressions, the likelihood ratio can be written
as

Γ =
fΘ|H(θ|H1)

fΘ|H(θ|H0)

= S�t

�t∏
i=1

pd(xt, xi, α)∫
D pd(xt, x, α) dx

fLt|L,H(�t|�, H1)

fLt|L,H(�t|�, H0)
.
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The decision is usually defined in terms of such log-likelihood ra-
tio

γ = ln Γ
H0
≶
H1

τ.

Under Bayes criteria, the threshold is easily set as [3]

τ = ln
π0(C10 − C00)

π1(C01 − C11)

and under NP criteria, the threshold could be calculated by asymp-
totic gaussianity, like in [1].

To complete the expression for the test, we need the proba-
bilities pt|i involved in fLt|L,H(�t|�, Hi). Given the distributions
fX|H,Y (xi|Hi, 1) for the positions of sensors detecting a target
under each hypothesis, (1) and (2), it is straightforward to obtain

pt|1 = (1 − pe) · pD|1,

and
pt|0 = (1 − pe) · pD|0,

where

pD|1 =

∫
D

[
pd(xt, x, α)

]2
dx∫

D pd(xt, x, α) dx
,

and
pD|0 = α.

5. LARGE DEVIATION BOUNDS ON THE
PROBABILITY OF ERROR

In this section, we will bound the probability of error in the hy-
pothesis test by using large deviation bounds in the form of error
exponents. If εn is the probability of error (of some kind) obtained
with n observations, the error exponent is defined as

lim
n→∞

− 1

n
ln εn

In NP test, the best error exponent is given by the Stein’s
lemma, that applied to our problem says that for any αn ∈ (0, 1)

lim
n→∞

− 1

n
ln βn = D(fΘ|H(θ|H0)‖fΘ|H(θ|H1)),

where D(fΘ|H(θ|H0)‖fΘ|H(θ|H1)) denotes the Kullback-Leibler
(KL) divergence [4] between the probability density functions of
the observations under each hypothesis. We will use the notation
D(H0‖H1) for short.

In Bayes tests (assuming that C10 − C00 = C01 − C11), the
best achievable error exponent is the Chernoff information. Due
to space limitation, in this paper we will obtain the large deviation
bound only for NP tests, although a development parallel to the
one followed in [1] could be performed.

The KL divergence, in our problem, takes the form

D(H0||H1) =

∫
θ

1

S�
· fLt|L,H(�t|�, H0)·

ln
fLt|L,H(�t|�, H0) · S�−�t

S� ·
�t∏

i=1

fX|H1,Y (xi|H1, 1) · fLt|L,H(�t|�, H1)

dθ,

which becomes

D(H0||H1) =

�∑
�t=0

fLt|L,H(�t|�, H0)

·
{

ln
fLt|L,H(�t|�, H0)

fLt|L,H(�t|�, H1)
− �t · ln S

− �t
1

S

∫
D

ln fX|H1,Y (x|H1, 1) dx

}
.

6. ONE EXAMPLE

We provide an example of the performance of the test using the
“spanish hat” model for the probability of detection. This model
is defined as

pd(xt, x, α) =

{
(1 − β) if ||xt − x||2 < ro

α otherwise
,

where ro is the range of the sensor, and β is the probability of
misdetection. For simplicity, we use circular exploration areas, D,
of radius R, centered at the target position xt. For this choice, we
have the following values

pD|1 =

⎧⎨
⎩

(1 − β) if R ≤ ro

πr2
o(1 − β)2 + π(R2 − r2

o)α2

πr2
o(1 − β) + π(R2 − r2

o)α
if R > ro

,

∫
D

ln fX|H1,Y (x|H1, 1) dx ={
πR2 ln 1−β

C
if R ≤ ro

πr2
o ln 1−β

C
+ π(R2 − r2

o) ln α
C

if R > ro

,

where constant C =
∫
D p(xt, x, α) dx, is in this case

C =

{
πR2(1 − β) if R ≤ ro

πr2
o(1 − β) + π(R2 − r2

o)α if R > ro

.

Figure 1 shows the KL divergence obtained for a sensor range
ro = 1, as a function of the radius, R, of the circular area D. The
following values have been assumed: α = 0.1, β = 0.1, pe = 0.1,
ps = 0.5 and � = 50 sensors.
It can be seen how, as expected, the divergence keeps constant as
the size of the exploration area is smaller than the sensor range. In
this case, all sensors in the area exhibit the same detection capabil-
ity. However, as R becomes greater than the sensor range ro, some
sensors in the area have the target out of their range, and therefore
are non informative in the test. This has the effect of decreasing
the divergence.

Although this is a simple example, because the “spanish hat”
model is only a first order approximation of a probability of detec-
tion function, it can be seen that this measure can be used to define
the optimal size for the exploration area.

The evolution of the divergence as a function of sensing prob-
ability, ps, and the probability of transmission error, pe, is plotted
in Figure 2.
Again, the obtained results are the expected ones. As the probabil-
ity of transmission error increases, the divergence decreases, and
the opposite happens with the sensing probability.
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Fig. 1. Divergence D(fΘ|H(θ|H0)‖fΘ|H(θ|H1)) for the “span-
ish hat” model and a circular area D centered at the target position,
xt, as a function of the radius R of the area.
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Fig. 2. D(fΘ|H(θ|H0)‖fΘ|H(θ|H1)) for the “spanish hat”
model and a circular area D centered at the target position, xt,
as a function of the sensing probability, ps, and the probability of
transmission error, pe.

This simple example shows that this measure can be used for
the goal of designing parameters of the network such as the sensing
probability (ps), or the design of the medium access code or the
error protecting codes.

7. DISCUSSION

In this paper, we proposed a censoring scheme to improve the en-
ergy efficiency of the detection process. As the wireless communi-
cation with the fusion center is one of the most energy consuming
operation, we propose to transmit only the positions of the sensors
that have detected a target. Moreover, for the sake of enlarging the
life of the sensor network, each sensor only senses with a previ-
ously specified probability, ps.

Based on a probability of detection model, which depends on
the underlying physics of the sensing process and is assumed to
be known, we have derived the NP and Bayes test by defining a
set of observations including the number of successful lectures, �t,
received at the fusion center.

The probability of error of the NP test is analyzed using the
Stein’s lemma, and therefore, the Kullback-Leibler divergence be-
tween the joint probability density functions conditioned to both
hypothesis has been obtained as a measure of performance.

This measure has been shown to be useful in several tasks con-
cerning the network design and operation. For instance, to obtain
the optimal size of the exploration area or to select the ps param-
eter or the probability of error pe (which is defined by the MAC
and by the error protection code). The divergence can explain the
capability of discrimination between both hypothesis and how the
different parameters affect this divergence. This information can
be used to obtain a trade-off between different requirements.

For instance, when the goal is to define the optimal strategy
in terms of a trade-off between energy cost and probability of de-
tection, this measure is also valuable. In this case, representing
the average energy versus the divergence would be helpful. In this
case, further work is necessary to model the cost per transmission
and to obtain a measure of the probability of detection/energy cost
ratio obtained with the proposed test.
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