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ABSTRACT
Quantization for estimation is explored for the case that it
must be performed jointly with data association; that is, the
case in which measurements are of uncertain origin. Data
association requires some sort of gating of distributed ob-
servations, and a censoring strategy is proposed. Several
quantization philosophies are explored, specifically uniform
quantization, uniform quantization with measurement ex-
changeability incorporated (the “type” method), and uni-
form quantization of sorted measurements. It is shown, per-
haps surprisingly, that the third scheme preserves more in-
formation that may be useful for estimation; and a simple
procedure for optimal fused estimation based on this third
scheme is given. Interestingly, when compared in terms of
rate-distortion curve, the schemes two and three perform
similarly; their censored versions offer further improvement
in performances due to the uncertain-origin property of the
measurements.

1. INTRODUCTION

Data association [1, 2] refers to the practical concern that
estimation must be done despite measurements being unla-
beled: a target-originated measurement, if one is available,
is among a group of false “clutter” measurements, and it
is up to the estimation routine to decide which is which.
In this paper we are interested in fused estimation of dis-
tributed observations that have been quantized and shared
over a bandlimited channel: what is the impact of data as-
sociation on quantization?

The paper is organized as follows. In section 2 we de-
scribe the model we shall explore: the goal is distributed
estimation of a common one-dimensional quantity whose
prior uncertainty is Gaussian and which is observed with
additive noise among a background of unlabeled clutter ran-
dom observations whose cardinality is itself a random vari-
able (we take its distribution as Poisson). In section 3 we ex-
plore several uniform quantization strategies, and of special
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interest we have the “type” method, the “sorted” method,
and the censored versions of these; the sorted approach ap-
pears complicated due to its dependency, but we are able
to provide a neat and efficient fusion rule. We stress this
point: in order to appropriately compare the “type” and
“sorted” methods, it is mandatory to employ for both of
them an optimal fusion rule. Usually adopted approxima-
tions of the fusion rule, valid for high resolution quantizers
(see for instance [7]) are no longer applicable; accordingly,
a fair amount of mathematics provides us a simple and plug-
in formula for this.

The type method is more frugal with bandwidth, while
the sorted method provides better estimation: in section 4
we explore the tradeoff under the assumption that the quan-
tizer output is processed by means of optimal source cod-
ing. We then discover via a rate-distortion function that both
offer similar performance. In this section it is also found
that the simple censoring rule that no more than the average
number of observations per sensor ought to be quantized
offers robust performance. In section 5 we summarize, and
the basic message will be that a relatively simple uniform
approach to quantization appears to be a strong competi-
tor, at least as long as source coding is used. The “sorted”
method is appropriate for systems that avoid complicated
source coding and operate at a fixed and very low transmis-
sion rate. Finally, data censoring may be a valid alternative,
due to the uncertain-origin property of the measurements.

This paper is a condensed version of [6], and some of
the notation and mathematical development is more clearly
given in that reference.

2. BACKGROUND

2.1. Model

The joint pdf of the aggregate X and of the number of mea-
surements M , for a given target location θ (a-prior itself
Gaussian), is

F (X, M | θ) =
J∏

j=1

f (xj , mj | θ) . (1)
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The indicated conditional pdf pertaining to the j-th sensor
may be found in the following form [1, 2]. For mj > 0,

f (xj , mj | θ) =
P(mj − 1; λ)Pd

mj V mj−1

mj∑
k=1

N (xjk; θ, σ)

+
P(mj ;λ)(1 − Pd)

V mj
, (2)

while for mj = 0 (i.e., no measurements at all at sensor j),
we have

f (xj , mj = 0 | θ) = P(0; λ)(1 − Pd) . (3)

in which P denotes a Poisson pmf. This paper confines
itself to the case that each sensor performs a scalar uni-
form quantization of the observed data. Assuming good
source coding there is little to be gained by using quantizers
whose characteristics are specifically tailored to the input
data statistics [5]; as a matter of fact, in this case, the uni-
form quantizer is known to be nearly optimum [3], [4].

3. SYSTEM DESIGNS

We assume that the remote sensors operate as uniform quan-
tizers with some modest signal processing capability. Such
capabilities are used for data ordering, censoring, and source
coding — details will be given shortly. As to the FC, we
look for some simple, occasionally sub-optimal, fusion rule.
With these problem constraints in mind we now introduce
practical quantization and estimation strategies in the fol-
lowing four subsections (the first of these is trivial, and is
for comparison). Performance analysis is then provided in
a following section.

3.1. MS∞: Unquantized MS

This ideal case (number of quantization bits n → ∞) has
little to do with a practical system, but functions here as a
bound on the achievable MSE of the estimate.

3.2. MSq: Quantized MS

Let us assume now that the channels between remote sen-
sors and FC are capacity constrained. Accordingly, we as-
sume that each remote sensor computes a quantized version
of the measured data vectors, and transfers it through the
channel toward the FC. In this section we first describe how
the FC evaluates its fused MS estimate, say θ̂MSq . It turns
out, not surprisingly, that only the empirical pmf (we shall
call this the type) of the quantized data vector from each sen-
sor is used by the FC to obtain θ̂MSq . Accordingly, we then
recommend that each sensor send over the channel only its
type (again, our use of the “type” means that the commu-
nication strategy delivers only the number of observations

in each quantization bin, and does not label these), since
the labelling of the observations by sensor j is arbitrary and
irrelevant to estimation of θ.

3.3. MSord−q: Ordered-quantized MS

Let xord = [xπ(1), xπ(2), . . . , xπ(mj)]
T denote the ordered

version of the data vector x (subscripts j dropped for clar-
ity). Then we know i < t ⇒ |xπ(i)| ≤ |xπ(t)|. We pro-
pose to apply the quantization process to the vector xord

j

instead of xj . When this procedure is used, we shall use
the notation qord

j = Qn(xord
j ) for the quantizer output1,

and further define the corresponding aggregate as Qord =
{qord

1 , qord
2 , . . . , qord

J }. We have the following:{
MSE{Qord} ≤ MSE{T (Q)} ,
H(qord

j ) ≥ H(type(qj)) ,
(4)

in which the first (along with a neat explicit means to com-
pute the optimal estimate from the ordered data) is shown in
[6]; and the second follows from the (obvious) fact that we
cannot send just the “type”.

3.4. C-MSq & C-MSord−q: Censored versions of MSq &
MSord−q

We can apply data censoring to either of the above estima-
tion strategies: MSq and MSord−q . In a censored scheme
each sensor will retain only a given number m�

j of obser-
vations, out of mj . As an extreme case of censoring we
take the “nearest-neighbor” data association idea [1] that a
“hard” assignment is made that whatever measurement is
nearest to the target’s predicted location is target-generated,
and all others clutter. Here we are interested in m�

j ≥ 1.

4. PERFORMANCE ANALYSIS

We refer to the following:

• V = 7 − 10 (screen size).

• Pd = 0.8 (detection probability).

• λ = 2 − 5 (average number of false alarms).

• σθ = 1 (a-priori standard deviation of the r.v. θ).

• σ = 0.1 (measurement noise standard deviation).

• θ0 = 0 (mean value of the r.v. θ).

Most results here are for j = 2 sensors; larger-network re-
sults are given in [6]; results tend to be similar.

1We wish to avoid confusion here: please, note that qord
j is not neces-

sarily the (modulus) ordered version of qj , because the ordering and the
quantization operations are not commutative. They would be commutative
if the ordering were not a modulus ordering.
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Fig. 1. MSE of the θ estimates versus the quantization bit
number n.

A first comparison among the four estimation strate-
gies is made on the basis of the MSE achieved with a pre-
scribed number n of quantization bits. The comparison,
based on 104 Monte Carlo runs, is provided in Fig. 1 for
J = 2 and λ = 3. We see that the MSq and MSord−q es-
timates converge, for large n, toward the MSE lower bound
of MS∞ (unquantized data). On the other side (lower n) the
curves move toward the upper bound, represented by the
a-priori uncertainty σ2

θ = 1. We also see that the MSE per-
taining to the estimate based on ordered-and-quantized data
Qord is always lower than that based on the MSq strategy,
with the relative difference increasing as the quantization
coarsens. As mentioned earlier, Qord contains more infor-
mation about θ than Q.

As to the truncated strategies (C-MSq, C-MSord−q), the
curves in Fig. 1 refer to the particular choice m� = 3. In
this case, we see that at intermediate values of n the MSE
is in the same order of magnitude as that of the MSq and
MSord−q estimators. However, there is a saturation effect at
large n where the lower bound of MS∞ cannot be reached.
The reason why we choose m� = λ is that deeper censoring
implies greater MSEs; more details later. It is interesting
that in Fig. 1 we have C-MSq preferable to MSq for single-
bit quantization: this is because the censoring procedure is
actually preceded by an ordering step that removes outlying
(likely to be clutter) measurements.

As discussed earlier, we assume that each sensor em-
ploys an optimal source coding technique such that the av-
erage data rate is just the entropy of the vector to be sent.
Fig. 2 refers to J = 2 and λ = 3. The curves labelled
with “MSq (no-type)” are those of H(qj): apparently, the
entropy grows linearly with n. Specifically, look at the case
of n = 1, where H(type(qj)) is substantially lower than
H(qord

j ). However, the two curves approach each other for
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Fig. 2. Entropies of the data vectors to be sent over the
channel, as a function of the number of quantization bits n.
We take this as a proxy for the communication load implied
by the strategies.

larger n.

Referring for instance to the uncensored curves in Fig.
1, we see that MSord−q has a lower MSE than MSq; but we
also discover that it requires a higher transmission rate from
Fig. 2. From a theoretical viewpoint, the lesson learned is
summarized in eqs. (4), that sorting the measurements prior
to quantization provides greater accuracy, but the expense of
higher required bandwidth. How do these effects trade off?
To answer, we assume that the required bit-rate Rb equals
the entropy of the vector to be sent (i.e., that an efficient
source code is in use). For a given number of bits of quan-
tization n we blend Fig. 1 (MSE vs. n) and Fig. 2 (entropy
vs. n). Parametrized from these we can build Fig. 3 which
shows (MSE, Rb) pairs.

The censored curves (with m� = λ) give the best perfor-
mance up to a certain Rb. Above this, due to the censoring,
the MSE cannot be reduced further and the best option be-
comes the uncensored case (or a censored approach with a
larger m�, see below). The crossing point is clearly visible
in Fig. 3, at Rb ≈ 17 bits/scan.

Let us now return on the choice of m�, the censoring
level. An instance is offered in Fig. 4: the curve MSord−q

serves as reference, and the others give the rate-distortion
behavior by varying the number of samples sent. It is seen
that m� = 2 = λ − 1 rapidly saturates to a fixed value of
MSE. The censoring depth m� = 3 = λ is a good choice for
most (MSE, Rb) pairs: only at high Rb is m� = 4 = λ + 1
preferable. (The same result is obtained for other values of
λ.)
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Fig. 3. MSE of the θ estimates versus the bit rate Rb

(bits/scan).

5. CONCLUSIONS

With the advent of dense sets of cheap sensors, as an attrac-
tive alternative to relatively few expensive ones operating
under the trivial “reporting responsibility” fusion scheme,
the issue of how best to represent information for transmis-
sion over bandlimited channels — and of course how to fuse
such information when it arrives — has once again risen to
importance. There was a period of prior interest, and there
were many interesting and clever results such as nonuniform
quantization strategies, and theory relating to convergence,
asymptotics, and to rate-distortion functions. Rather sur-
prisingly, what has been missing is discussion of a highly
practical concern: data association. In many surveillance
applications there are false alarms and missed detections:
there is “measurement origin uncertainty” and a variable
number of measurements per sensor per scan to be com-
municated.

Our findings are as follows:

• Scheme (2) is always preferable to scheme (1), since
its bandwidth is lower.

• Scheme (3) is preferable to schemes (1) and (2) in
terms of MSE when the number of bits of quantiza-
tion is held fixed. This surprising fact comes about
from the information preserved via the sorting opera-
tion.

• While Scheme (3) may at first appear onerous in terms
of fusion, we have provided an explicit way to com-
pute its fused estimate.

• When both MSE and bandwidth are taken into ac-
count, the empirical rate-distortion functions show that
schemes (2) and (3) are similar in performance.

• The censoring schemes (4) and (5) are preferable to
(2) and (3) in rate-distortion terms.
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Fig. 4. MSE of the θ estimates versus the bit rate Rb

(bits/scan), with several choices of m�.

• An appropriate censoring level appears to be the num-
ber of false alarms per screen.

We would like to stress that the numbers turn out, in fact, to
be rather heartening. For example, even with an average of
five false measurements per gate, it is possible to achieve
almost optimal performance using approximately only 20
bits per sensor (per dimension, per scan)!
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