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ABSTRACT

This paper proposes a new digital beamformer for uniform 

concentric circular array (UCCA) having nearly frequency 

invariant (FI) characteristics. The basic principle is to transform 

the received signals to the phase mode and remove the 

frequency dependency of the individual phase mode through the 

use of a digital beamforming network.  The far field pattern of 

the array is determined by a set of weights and it is 

approximately invariant over a wide range of frequencies. 

Compared with FI uniform circular array (UCA), FI UCCAs are 

able to achieve a wider bandwidth.  Design examples are given 

to demonstrate the principle of the proposed UCCA-FIB and its 

application to broadband DOA estimation of coherent sources.   

I. INTRODUCTION

Wideband beamforming using sensor arrays is an effective 

method for suppressing interference whose angles of arrival are 

different from the desired looking direction. They find 

important applications in radio communications, sonar, radar, 

and acoustics [1-3].  Traditional adaptive wideband beamformer 

usually employs tapped-delay line with adaptive coefficients to 

generate appropriate beam patterns for interference suppression.  

This usually requires considerable number of adaptive 

coefficients resulting in rather long convergence time and high 

implementation complexity. This can be remedied by using 

subband decomposition technique, partial adaptation or using 

frequency invariant beamformers (FIB) [4-6,7,9].  In FIB, a 

beam-forming network is used to generate beam pattern with 

approximately frequency invariant (FI) characteristics over the 

frequency band of interest. They can attenuate broadband 

directional interference using an adaptive beamformer with very 

few number of adaptive filter coefficients [5].  One of the 

widely studied FIB is the uniform linear array (ULA) FIB [4-8]. 

The ULA has a linear geometry with equal inter-sensor spacing. 

Due to this geometry, its angular resolution at boresight is better 

than that at its end-fire. In addition, this simple array structure 

enables many efficient direction-of-arrival (DOA) detection 

algorithms to be obtained. For example, the MUSIC algorithm 

[10] provides a high resolution method for detecting the angle 

of arrival (AoA) of the signal sources based on the subspace 

approach.   The MUSIC algorithm can also detect wideband 

coherent sources in beamspace by performing MUSIC in 

beamspace using ULA-FIB [9].  Besides AoA estimation of 

wideband sources, adaptive interference suppression using 

beamspace adaptive beamforming [5] is very attractive because 

of the small number of adaptive weights required and the 

possibility of employing partial adaptation, yielding faster 

convergence and fewer number of high speed variable 

multipliers.   

Given the advantages of ULA-FIB, electronic steerable 

uniform-circular arrays (UCAs) [1] with frequency invariant 

characteristics were studied in [14].  Unfortunately, the 

passband of a UCA is closely related to its radius and exhibit a 

bandpass characteristic.  To obtain a frequency invariant 

characteristic over a large bandwidth, the dynamic range of the 

compensation filters will become very large and it leads to 

considerable noise amplification of the array. In this paper, we 

show that this problem can be overcome if uniform concentric 

circular arrays (UCCA) are employed. The sensors in a UCCA 

are placed on concentric circles with a uniform inter-sensor 

spacing and increasing radius.  We find that UCAs with 

increasing radius will have their passbands moving towards the 

lower frequency bands.  Hence, by using ring subarray with 

progressively larger radius in a UCCA, one can achieve a 

frequency invariant characteristic over a much larger bandwidth 

than a single UCA.  Like UCAs, UCCAs differ from ULAs in 

the following: i) the azimuthal coverage of a UCCA is 3600 in 

contrast to 1800 of that in ULA, ii) the beampattern of UCCA is 

relatively uniform around the azimuth angle while that of ULA 

broadens as its beam is steered away from the boresight. As for 

DOA estimation, UCCA is suitable for 2D DOA estimation 

(azimuth and elevation angle) while the ULA is more suitable 

for azimuth angle DOA estimation [11]. Finally, as mentioned 

earlier, UCCA is able to form electronic steerable beam patterns 

that are relatively invariant with frequency over a wide 

bandwidth.

Similar to the FI UCAs in [14], the basic idea of the FI 

UCCA is to transform each snapshot sampled by the array to 

the phase modes via an Inverse Discrete Fourier Transform 

(IDFT).  The transformed data is then filtered to compensate for 

the frequency dependence of the phase modes. Finally, these 

frequency invariant phase-modes are linear combined using a 

set of weights or coefficients to obtain the desired frequency 

invariant beam patterns.  These weights, which govern the far 

field pattern of the UCCA, can be designed by conventional 1D 

digital filter design techniques such as the Parks-McClellan 

algorithm. Alternatively, different beam patterns can be created 

by varying these coefficients in an adaptive beamformer with 

approximately frequency invariant characteristics. The 

compensation filters are designed using second order cone 

programming (SOCP).  Several design examples are given and 

the results show that electronic steerable beam patterns with 

approximately frequency invariant over a fairly large bandwidth 

can be obtained.  This is very important in adaptive arrays 

where deep nulls in the target frequency band are desirable in 

suppressing broadband interference. To demonstrate some of 

the potential benefits of the FIB UCCA, a broadband DOA 

estimation using the UCCA beamformer is also given and the 

simulation result is very satisfactory.  The paper is organized as 

follows: In section II, UCCA is introduced. In section III, the 

digital broadband UCCA FIB design is presented. In section IV, 

several design examples are given. In section V, conclusions are 

drawn.

II. UNIFORM CONCENTRIC CIRCULAR ARRAY (UCCA) 

Figure 1 shows a UCCA with P rings and each ring has Kp

omnidirectional sensors located at }sin,cos{
pp kpkp rr

(represented as Cartesian Coordinate with the center as the 

origin) where rp is the radius of the pth ring, Pp ,,1 ,

ppk Kk
p

/2  and 1,,0 pp Kk  as shown in Figure 2. In 

UCCAs, the inter-sensor spacing in each ring is fixed at 2/

where  is the smallest wavelength of the array to be operated 

and is denoted by s .  The radius of the pth ring of the UCCA is 
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given by ))/sin(4/( psp Kr . (1)

For convenience, this radius is represented as its normalized  

version ))/sin(4/(1/ˆ
pspp Krr . (1a)

Let denote the ratio of the sampling frequency fs to the 

maximum frequency fmax ( max/ ff s ), the phase difference 

between the kp
th sensor and the center of the UCCA is 

)cos(sinˆ2
pp kpk r , and the corresponding phase 

shift is 
)cos(sinˆ

pkprj

e , where , and are the azimuth angle 

and the elevation angle respectively, as shown in figure 3. 

Hence, the steering vector [1] of the pth ring of a UCCA is: 

][
)cos(sinˆ)cos(sinˆ)cos(sinˆ 110 pKppp

rjrjrj
eees .

(2)

The azimuth angle  is on the horizontal plane where the 

sensors are situated. It measures from a reference imaginary 

axis on this horizontal plane, while the elevation angle  is 

measured from a reference imaginary axis perpendicular to the 

horizontal plane. Without loss of generality, our design will be 

focused at an elevation angle of 2/ , i.e. the horizontal 

plane.

III. DIGITAL BROADBAND UCCA FIB

Figure 4 shows the structure of the broadband FIB for the 

pth ring of a UCCA. After appropriate down-converting, 

lowpass filtering and sampling, the sampled signals from the 

antennas are given by the vector 
T

Kp nxnxnxn
p

]][][][[][ 110X , which is called a snapshot 

at sampling instance n. This snapshot is IDFT transformed to 

the phase-mode and the transformed snapshot is denoted by 

][][ nn pKMp pp
XWV , where 

pp KMW  is an Mp by Kp IDFT 

matrix with ppp

pppp

Kkmj

kmKM e
/2

,][W

and 1

0

2

][][][
p

p

pK

pmpk

ppp

K

k

j

kmmp enxnvnV .
(3)

Here, nm,][A  denotes the (mxn) entry of matrix A.  We assume 

that Mp is an odd number and define 2/)1( pp ML .  Each 

branch of the IDFT output is then filtered by )(
pmH  (to 

compensate for the frequency dependency as we shall see later 

in this section), multiplied with 
pmg  before combining to give 

the beamformer output ][nyp :

p

pp

ppp

L

Lm

mmmp gnhnvny ][][][ , 
(4)

where * denotes discrete-time convolution.  To obtain the 

spatial-temporal transfer function of the beamformer, let us 

assume that there is only one source signal s(n) with spectrum 

)(S .  Taking the Discrete Time Fourier Transform (DTFT) of 

equation (3), one gets 
1

0

)cos(ˆ
1

0

22

)()()(
p

p

pK

pmpk

pkp
p

p

pK

pmpk

pp

K

k

jrj
K

k

j

km eeSeXV .

  (5a) 

Taking DTFT on both size of equation (4) and using (5a), we 

have
p

pp

ppp

L

Lm
mmmp HVgY )()()(

p

pp

p

p

p

pK

pmpk

pkp

p

L

Lm

m

K

k

jrj

m HeegS )()(

1

0

)cos(ˆ
2 (5b)

Hence, the spatial-temporal response of the pth ring is 

p

pp

p

p

p

pK

pmpk

pkp

p

L

Lm

m

K

k

jrj

mp HeegG )(),(

1

0

)cos(ˆ
2

.

(6)

To obtain a frequency invariant response, the term inside the 

bracket should be independent of the frequency variable .

First of all, using the expansion [13], 

jn

n

n

nj eJje )(cos ,
(7)

where )(nJ  is the Bessel function of the first kind, (6) can be 

rewritten as 

p

pp

p

p

pK

npm

p

pp

p

p

p

p

p

pK

pmpk
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p

L

Lm
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)(2
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(8)

Further, the term inside the bracket is evaluated to be 

qwhere
otherwise

KqnmK
e

pp

K

k

kjp

p

pK

npm

p

,
0

1

0

)(2

.
(9)

Substituting (9) into (8) gives 

p

p

p

pp

p

L

Lm

m

qKmn

jn

pn

n

mpp HerJjgKG )()ˆ(),( .

(10)

From [13], the Bessel function has the following property 
||

||
||2

ˆ
)ˆ(

n

p

pn
n

er
rJ .

(11)

Therefore, for sufficiently large value of n , the value of the 

Bessel function will be negligibly small.  In other words, if the 

number of sensors is large enough, ),(pG  can be 

approximated by 
p

pp

p

pp

p

p

L

Lm

jm

mpm

m

mpp eHrJjgKG )()ˆ(),( . 
(12)

It can be seen that for a given radius pr , the bandwidth of the 

array, without compensation, is determined by the term 

)ˆ( pm rJ
p

.  Rings with small radi usually have better high 

frequency response and vice versa.  Therefore, to obtain a FI 

with large bandwidth, small responses of )ˆ( pm rJ
p

 at certain 

frequencies have to be compensated by )(
pmH .  This is 

undesirable in general because it leads to considerable noise 

amplification.  Fortunately, by employing more rings in a 

UCCA, a wider bandwidth can be obtained.  

In a UCCA FIB, the outer rings have more phase modes 

than the inner ones. Let the weighting vectors of the rings be 

identical, i.e. Pggg 21 , where T

LLp PP
ggg ][ .

The overall response of the beamformer can be written as: 

P

P

L

Lm

P

p

p

mpm

m

p

jm

m

P

p
p

HrJjKeg

GG

1

1

)()ˆ(

),(),(
(13)

where for notation convenience, we write )(p

mH  as )(
pmH .

If the filters )(p

mH are designed such that 

1)]()ˆ([
1

P

p

p

mpm

m

p HrJjK  for ],[ UL ,
(14)

where L  and U  are respectively the lower and upper 

frequencies of interest, then the beamformer in (13) will be 

approximately frequency invariant within ],[ UL  and 
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P

P

L

Lm

jm

megG )( . 
(15)

Furthermore, its far field pattern is now governed by the 

spatial weighting }{ mg  alone.  Since the right hand side of (14) 

is a linear function of the filter coefficients in )(p

mH ’s, the 

design problem in (14) can be treated as a filter design problem 

with all the filter outputs adding up to a desire response of value 

1.  If the minimax error criterion is used, the filter coefficients 

for )(p

mH  can be determined by second order programming 

(SOCP) [15].  It can also be seen from (15) that the far field 

spatial response is similar to that of a digital FIR filter with 

impulse response }{ mg . Therefore, )(G  can be designed by 

conventional filter design algorithms such as the Parks-

McClellan algorithm or SOCP if convex quadratic constraints 

are to be imposed. In addition, angular shifted versions of (15) 

can be derived by modulating }{ mg  with sinusoids at 

appropriate frequencies. For example, if the shift is 2/ , then 

the modulation is }{ 2
mj

e , PP LLm ,..., .  In example 3 to be 

described in Section IV, this property is used to generate a set 

of broadband beamformers uniformly spaced in the angular 

domain.  Using a similar technique as in [9], DOA of broadband 

coherent signals can be estimated satisfactorily. Real-time 

adaptation of the beam pattern through the spatial 

weighting }{ mg  to suppress undesired interference is also 

simpler than traditional broadband adaptive array using tapped 

delay lines.  Due to page limitation, detailed simulation results 

are omitted here. We now consider some design examples.  

IV. DESIGN EXAMPLES

Example 1: UCCA-FIB with two rings.

In this example, a two-ring UCCA is considered. The inner 

ring and the outer ring have 10 and 18 omnidirectional sensors, 

respectively. The required bandwidth of the UCCA-FIB is 

]65.0,15.0[ .  The numbers of phase modes M are 

respectively 9 and 17. We choose the central 9 spatial filter 

coefficients (phase mode) out of the 17 to shape the spatial 

response of the UCCA FIB.  The desired beam is targeted at 
o60 and the beamwidth is o10 . }{ mg  are obtained from the 

Parks-McClellan algorithm according to the given  specification 

with same passband and stopband ripples. The frequency 

responses are shown in figures 5 and 6. For convenience, the 

frequency responses of the UCCA-FIB for ]65.0,15.0[

are overlapped together in figure 5 to illustrate the frequency 

invariant property of the beamformer. The frequency spectrum 

is approximately FI, with deep nulls formed at the desired 

position over the bandwidth of interest. Figure 6 shows the 

perspective view of the beamformer.  

Example 2: UCCA-FIB with three rings. 

A three-ring UCCA will be considered. The sensors in 

each ring are respectively 10, 18 and 28. The required FI 

bandwidth of the UCCA-FIB is ]75.0,3.0[ . The numbers 

of phase mode M are 9, 17 and 27, respectively. The 17 spatial 

filter coefficients (phase mode) out of the 27 are used to shape 

the FIB-UCCA spatial response. The desired beam is targeted at 
o20 and the beamwidth is o10 . Again, }{ mg  is designed 

using the Parks McClellan algorithm with the given 

specification and identical passband and stopband ripples. The 

frequency responses of the FIB in the range ]75.0,3.0[

are shown in figure 7. The  number of freedom and stopband 

attenuation are increased for the 3-ring case. 

Example 3: DOA Estimation using the UCCA beamformers 

In this example, the UCCA beamformer is used to find the 

DOAs of two arriving coherent signals at o35 and o40 .  The 

first signal is composed of 33 sinusoidal signals with 

frequencies ranging from 8108.0 to 8104   at an interval of 
8101.0  Hz. The other signal is a 10 sample delayed version of 

the first signal and the sampling rate  is set to 2. The basic 

beamformer is the same as the one in example 1, while the 

others are obtained by shifting its response equally in the 

angular domain.  The SNR is 25dB and the number of arrays 

used in the beamspace is 8. The DOA estimation method used is 

the beam-space MUSIC method in [9], which was designed for 

FIB ULA. Figure 8 shows the MUSIC spectrum obtained in dB 

and the estimated angles are found to be 34.35o and 39.59o,

which are very close to the true values. 

V. CONCLUSION

The theory and design of uniform concentric circular array 

(UCCA) having nearly frequency invariant (FI) characteristics 

are presented. By compensating the frequency dependency of 

individual phase modes using a digital beamforming network,   

the far field pattern of the array is determined by a set of 

weights and it is approximately invariant over a wide range of 

frequencies. Compared with FI uniform circular array (UCA), 

FI UCCA is able to achieve a wider bandwidth.  The principle 

and usefulness of the UCCA-FIB in broadband DOA estimation 

are illustrated by design examples.   
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Figure 3. Geometry of the reference imaginary frame. 
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Figure 5. Spatial response of the UCCA-FIB with 2 rings. 

Figure 6. Spatial response and frequency response of the UCCA-FIB 

with 2 rings.
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Figure 7. Spatial response of the UCCA-FIB with 3 rings.
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Figure 8 DOA estimation of two coherent sources based on the UCCA-

FIB with 2 rings. 
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