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ABSTRACT

For human-machine interfaces in distant-talking environments mul-

tichannel signal processing is often employed to obtain an en-
hanced signal for subsequent processing. In this paper we propose

a novel adaptation algorithm for a Filter-and-Sum beamformer to

adjust the coefficients of FIR filters to changing acoustic room

impulses e.g. due to speaker movement. A deterministic and a
stochastic gradient ascent algorithm are derived from a constrained

optimization problem, which iteratively estimate the eigenvector

corresponding to the largest eigenvalue of the cross power spectral

density of the microphone signals. The method does not require an
explicit estimation of the speaker location. The experimental re-

sults show fast adaptation and excellent robustness of the proposed

algorithm.

1. INTRODUCTION

Microphone array speech signal processing is an essential element

for hands-free speech communication or recognition. For remov-

ing unwanted interference and noise from desired signals, mul-

tichannel techniques exploit the spatial diversity to discriminate
between desired and undesired signal components. In this paper

we are concerned with adaptive beamforming to direct a beam

of increased sensitivity towards a possibly moving desired source,

whose position is not known a priori.
There are essentially three classes of source localization algo-

rithms [1]: a) Estimating the time differences of arrival, e.g. by the

Generalized Cross Correlation method, b) Using high-resolution
spectral estimation, and c) Using a beamformer which is steered in

various directions and searching for peaks in the output signal. All

these methods perform poorly in highly reverberant environments

and many encompass considerable computational effort [2].

The primary objective is, however, often not the determina-

tion of the source location but the computation of an enhanced
speech signal for subsequent processing (e.g. recognition or trans-

mission). In the approach described below we avoided to explicitly

localize the source. Instead we developed an adaptation algorithm

for a Filter-and-Sum beamformer (FSB) to adjust the coefficients
of the FIR filters to changing acoustic room impulse responses,

e.g. due to speaker movement. If necessary, information about the

source location can be derived from the filter coefficients [3].

In presteered arrays the microphone signals are appropriately

delayed to steer the beam towards the desired source location. For

broadband source signals, such as speech signals, subsequent FIR

filters are used to compensate for the frequency-selectivity of the

room impulse response. Frost developed a constrained LMS al-

gorithm to adapt the FIR filter coefficients [4]. His concept has

found many applications, with the generalized sidelobe canceller
by Griffiths and Jim as one of the most important extensions [5].

Frost did not consider the estimation of the steering angle. In

this paper we are concerned with the steering of the beamformer

towards the desired location. Rather than using pure time delays
(c.f. Delay-and-Sum Beamforming) we propose to use (typically

short) FIR filters instead, which are capable of not only compen-

sating for the time delays of the direct (line-of-sight) signal compo-

nent between the individual sensors but which can also align early
reflections. It is shown that this improves the signal-to-interference

ratio of the output signal. The FIR filter coefficients are determined

by solving a constrained optimization problem which turns out to

be an eigenvalue problem: For each frequency bin, the eigenvec-
tor associated with the largest eigenvalue of the cross-power spec-

tral density matrix of the input sensor signals is the optimum filter

coefficient vector. To compute this eigenvector, we derive an it-

erative method, which is suitable for tracking this eigenvector in

time-variant (e.g. due to speaker movement) scenarios. The well-
known Oja-rule for adaptive principal component analysis [6] can

be obtained as a special case of the proposed method.

The paper is organized as follows. In Sections 2, 3 and 4 we

formulate the optimization problem, derive a deterministic gra-
dient ascent solution, and present a stochastic gradient realisa-

tion, respectively. Section 5 presents experimental results which

demonstrate that the proposed method is both fast and robust and

thus well suited for complex time-varying acoustic scenarios.

2. FORMULATION OF CONSTRAINED OPTIMIZATION
PROBLEM

We are given an array of M microphones, where each microphone

signal xi(n) consists of two components: The desired signal com-
ponent si(n), which results from the convolution of the source

signal u(n) with the room impulse response hi(n), and the noise

term ni(n):

xi(n) = si(n) + ni(n)

= hi(n) ∗ u(n) + ni(n); i = 1, . . . , M. (1)

The goal of the beamforming is to obtain an estimate of u(n) by
filtering and then summing the microphone signals

y(n) =
MX

i=1

f̃i(n) ∗ xi(n). (2)
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Here, f̃i(n) = fi(−n) is the impulse response of the filter of the

i-th microphone signal. The filtering operation is preferably done

in the frequency domain:

Y (k) =
MX

i=1

F ∗
i (k) · Xi(k)

= FH(k) · X(k); k = 0, . . . , L − 1. (3)

Here, k denotes the frequency bin and L is the DFT-length. The

frame index has been omitted for ease of notation. In the following

we prefer the vector notation, e.g. X = (X1, . . . , XM )T . In (3)

(·)H denotes Hermitian transpose.

If the desired signal and the noise are uncorrelated the power
spectral density of the FSB output is obtained as

ΦY Y (k) = FH(k)ΦXX(k)F(k)

= FH(k) (ΦSS(k) + ΦNN(k))F(k) (4)

where ΦXX(k), ΦSS(k) and ΦNN(k) are the PSD matrices of
the microphone signals, the speech and noise terms, respectively.

Let us now assume spherically white noise

ΦNN(k) = σ2
N · IM (5)

(IM : identity matrix of dimension M × M ). Using this in eq. (4)
one can readily see that the signal-to-noise ratio of the output sig-

nal y(n) is maximized, if the power of y(n) is maximized under

the constraint
MX

i=1

|Fi(k)|2 = 1, ∀k. (6)

The constrained maximization problem

max
FH (k)

FH(k)ΦXX(k)F(k) subject to FH(k)F(k) = 1 (7)

is solved using the method of Lagrange [7]. We define the real cost

function

J = FH(k)ΦXX(k)F(k) + 2λ(FH(k)F(k) − 1) (8)

and compute the gradient

∇FJ = 2ΦXX(k)F(k) + 2λF(k), (9)

which is set to zero:

ΦXX(k)F(k) + λF(k) = 0. (10)

Obviously we have to conduct an eigenvalue decomposition of the

cross-power spectral density matrix of the sensor signals. Note

that this has to be done for each frequency bin separately.

3. DETERMINISTIC GRADIENT ASCENT

To iteratively solve eq. (10) we develop a deterministic gradient

ascent scheme:

F(κ + 1) = F(κ) +
µ

2
∇FJ

????
F=F(κ)

, (11)

where κ counts the iterations, and µ is the step size parameter.

Here and in the following we omit the frequency bin index k for

ease of notation. Using eq. (8) and determining the Lagrange mul-

tiplier λ from the constraint FH(κ + 1)F(κ + 1) = 1 we eventu-

ally arrive at the following iteration, after neglecting terms of order
O(µ2),

F(κ + 1) = F(κ) +
1

2

»
1

FH(κ)F(κ)
− 1

–
F(κ)

+ µ

»
φXXF(κ) − FH(κ)φXXF(κ)

FH(κ)F(κ)
F(κ)

–
.

(12)

If the constraint is satisfied, i.e. FH(κ)F(κ) = 1, the term in

the first pair of brackets vanishes, and if F(κ) is an eigenvec-

tor of φXX, also the term in the second pair of brackets is zero
(recognize the Rayleigh coefficient!). We therefore have F(κ +
1) = F(κ), which shows that the iteration indeed computes the re-

quested eigenvector. A detailed proof, that the weight vector F(κ)
converges to the first principal component can be done similar to

[8].
It is however important to note that it is not assumed before-

hand that the constraint is met! The term in the first pair of brackets

has a “stabilizing” effect: if FH(κ)F(κ) > 1 the term is negative

and the norm of F(κ) tends to be reduced. Similarly, a positive
correction term results if FH(κ)F(κ) < 1.

4. STOCHASTIC GRADIENT ASCENT

The cross power spectral density matrix of the sensor signals is not

known in practice. We therefore replace it by the instantaneous
estimate

φXX ≈ X(m)XH(m). (13)

Further, in every iteration a new block of data is processed, i.e. the

iteration index κ is replaced by the frame index m. Using this in

eq. (12) we obtain a stochastic gradient ascent algorithm

F(m + 1) = F(m) +
1

2

»
1

FH(m)F(m)
− 1

–
F(m)

+ µ

»
X(m)XH(m)F(m) − FH(m)X(m)XH(m)F(m)

FH(m)F(m)
F(m)

–
.

(14)

Employing (3) and rearranging terms we finally obtain

F(m + 1) = F(m)
1 + FH(m)F(m)

2FH(m)F(m)

+ µY ∗(m)

»
X(m) − F(m)Y (m)

FH(m)F(m)

–
.

(15)

Note that in this and the last section we omitted the frequency in-

dex k. However it has to be kept in mind that the aforementioned

iteration has to be carried out for every frequency bin separately.

Due to the block frequency nature of the algorithm it is easy to use
frequency-dependent step sizes that are inversely proportional to

the power levels in the DFT frequency bins, as proposed e.g. in

[9], for improved convergence speed.

If we assume that the constraint is met, i.e. FH(m)F(m) = 1
then the equation can be simplified to

F(m + 1) = F(m) + µY ∗(m) [X(m) − F(m)Y (m)] . (16)

This result is actually well known in the neural networks literature

under the name Hebbian-based maximum eigenfilter or Oja’s rule
[6, 10].
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5. EXPERIMENTAL RESULTS

While a complete theoretical stability and convergence analysis

has yet to be conducted, we are going to evaluate convergence rate

and robustness by an experimental study in the following sections.

5.1. Comparison of FSB with DSB
In a first set of experiments the performance advantage of Filter-

and-Sum beamforming (FSB) over conventional Delay-and-Sum

beamforming (DSB) was quantified.
We simulated various room reverberation times RT60 and dif-

ferent sensor constellations with the image method [11] and com-

puted the Energy Decay Curve EDC(j)

EDC(j) =

∞X
n=j

h2(n) /

∞X
n=0

h2(n) (17)

where the impulse response h(n) has the following interpretation

in the three setups investigated:

• Single Mic.: h(n) is the room impulse response (RIR) from

the source to a single microphone.

• DSB: h(n) is the sum of the properly delayed (according to

the direct path length differences) RIRs from the source to

M sensors. This setup corresponds to a perfectly operating

Delay-and-Sum beamformer.

• FSB: h(n) is the overall impulse response from the source

to the Filter-and-Sum (FSB) beamformer output: the RIRs

from the source to the M sensors are convolved with the
respective FSB filter impulse responses and then summed.

The FIR filter lengths of the FSB was set to 64 (at sampling

rate of 8kHz) and serve to align the direct paths from source

to sensors and, in addition, capture early reflections.

While the exact results depend on various parameters, we observed

in all experiments the same trends as exemplified in Fig. 1. It is

the result of the simulation for a room of size (6m)x(5m)x(3m)

with four linearly arranged microphones (distance of 10cm) and a
room reverberation time RT60 of 0.32s. The acoustical source was

placed 3m away from the sensors at an angle of 60 degrees relative

to broadside.

As can be seen, the ratio between the power in the direct to the
power in the diffuse part of h(n), which determines the clarity of

the output signal, is increased from a single microphone to a DSB

and even more increased by employing an FSB.
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Fig. 1. Energy decay curves for a single RIR, the DSB system and
the FSB system with reverberation RT60 = 0.32s.

5.2. Stability of Deterministic Gradient Ascent Rule
The step size parameter µ is crucial for the stability and rate of

convergence of the adaptation rule. For fast adaptation of the FSB

µ should be set to the largest value µmax which still guarantees

stability. Since an analytic computation of µmax from eq. (12) is

rather complicated we adopted the following simulation approach.

Any coefficient vector F(κ) can be expressed as a linear com-

bination of the eigenvectors e1, . . . , eM of φXX:

F(κ) =
MX

i=1

αi(κ)ei (18)

where αi(κ) denotes the weight of ei at iteration κ. Using eq. (18)

the deterministic update rule (12) leads to

α(κ + 1) = α(κ)
1 + αT (κ)α(κ)

2αT (κ)α(κ)

+ µL

»
Λ − diag

j
αT (κ)Λα(κ)

αT (κ)α(κ)

ff–
α(κ)

(19)

with α = (α1, . . . , αM )T . Λ = diag{λi} denotes the diagonal
matrix of eigenvalues arranged in descending order λ1 > λ2 ≥
. . . ≥ λM > 0.

Similarly, a recursion in the weight vector α can be derived

for the deterministic version of Oja’s rule (16):

α(κ + 1) = α(κ) + µO

»
Λ− diag

j
αT (κ)Λα(κ)

ff–
α(κ).

(20)

The step size parameter µ has been given the indices ”O” in Oja’s

rule and ”L” in the novel rule derived from Lagrange approach.

Using these recursions we studied the convergence of the weight
vector α from its initial value α(0) to its final value α(∞) =
(1, 0, . . . , 0)T as a function of the initial deviation K :=‖ α(0) ‖2

from the constraint ‖ α(0) ‖2= 1, the eigenvalue spread χ =
λmax/λmin , and of the step size parameter µ.

We found by simulations that the maximum step size µmax

for eq. (19) and (20) can be written as

µmax =
2

ξmin · λmax
. (21)

From experiments we derived the following upper bounds which
guarantee stability of the deterministic gradient ascent rules:

ξOmin < ξO(χ, K) = 1 +
K − 1

2
(1 +

1

χ
) < K (22)

ξNmin < ξL(χ) = 1 − 1

χ
< 1. (23)

Fig. 2 compares the experimental results for K = 50 (cross

markers) and K = 100 (square markers) with the upper bounds

ξO(χ, K) and ξL(χ), respectively. Note, that unlike ξO(χ, K) for

Oja’s rule, ξL(χ) is independent of the initial deviation K! This
is a very desirable property, since K is very hard to predict for a

moving speaker. In experiments we observed temporary constraint

mismatches K due to fast speaker movement, which can assume

values of a few hundred. Accordingly µO , the step size parameter
in Oja’s rule, has to be chosen very conservatively, whereas µL

can be chosen much larger:

0 < µO <
2

Kλmax

0 < µL <
2

λmax
.
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Fig. 2. Comparison of experimental results with upper bound for
Oja’s rule (upper figure) and the novel rule (lower figure).

5.3. Learning Curves
In another set of experiments we studied the evolution of the squared

error
e2(κ) =‖ α(∞) − α(κ) ‖2

(24)

over the number of iterations κ.

Fig. 3 shows the squared error of Oja’s rule e2
O(κ) and of

the Lagrange method e2
L(κ), both normalized to e2(0). The ini-

tial constraint mismatch was set to K = 10, and the number of

channels was M = 4. The squared error is shown for the same

normalized step sizes γ for both update rules, where

γ =
µ

2/(Kλmax)
. (25)

Note, that γ = 1 is the maximum value that still guarantees sta-

bility of Oja’s rule, whereas γ could have been chosen larger (and

thus enabling even faster convergence) for the novel update rule.
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Fig. 3. Convergence rate in terms of the squared error with varying
step size parameter.

The increased convergence rate of the proposed algorithm may
be attributed to the fact, that αT (κ)α(κ) is compliant with the

constraint already after a few iterations.

In Fig. 4 we have plotted the values of αi(κ), i = 1, . . . , 4 and

αT (κ)α(κ) versus iteration index κ for K = 10 and γ = 0.01. It
can be seen that α1, the weight of the eigenvector corresponding to

the largest eigenvalue, converges to one and the other αi converge

to zero for both rules. However, the constraint (dashed line) is met

much faster with the novel rule as compared to Oja’s rule.

6. CONCLUSIONS

In this paper we have proposed a novel adaptation scheme for

acoustic Filter-and-Sum beamforming, which is based on adap-

tive principal component analysis. The well-known Oja’s rule is
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Fig. 4. Convergence rate of αT (κ)α(κ) (dashed) and αi (solid)
for Oja’s rule in the upper figure and the novel Lagrange rule in
the lower figure for K = 10 and γ = 0.01.

obtained as a special case. The experimental results show the su-
periority of Filter-and-Sum beamforming compared to Delay-and-

Sum beamforming and demonstrate the excellent convergence rate

and robustness of the proposed method. The range of allowable

step sizes and the convergence rate does not depend on temporary
constraint mismatches which can be caused by fast speaker move-

ment.
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