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ABSTRACT

The MVDR beamformer is the most extensively used array pro-
cessing algorithm and involves inverting the sample covariance
matrix. In the snapshot deficient scenario, when the number of
sensors is greater than or approximately equal to the number of
snapshots, the eigenvalues of the resulting sample covariance ma-
trix are poorly conditioned. Diagonal loading is then applied to the
sample covariance matrix. Expressions for the bias of the resulting
MVDR beamformer outputs in the sidelobe region are presented
that are exact for asymptotically large arrays. Numerical simula-
tions confirm the accuracy of these asymptotic expressions when
predicting the bias of the outputs of moderately large arrays.

1. INTRODUCTION

Analytical expressions for the bias and variance of the minimum
variance distortionless response (MVDR) beamformer outputs un-
der diagonal loading have been considered as open problems by
researchers in array processing [1]. A closed-form expression for
the bias of the diagonally loaded MVDR beamformer in the side-
lobe region is presented that has been derived using infinite random
matrix techniques [2–5].

A part of our work is similar to that of Mestre and Lagunas [6]
in the sense that we too use infinite random matrix techniques to
characterize the bias of the MVDR beamformer under diagonal
loading . Our work is different from theirs because we explicitly
derive closed-form analytical expressions for the bias even in the
regime when the number of snapshots is less than the number of
sensors for both forms of the MVDR beamformer. These expres-
sions are useful because they help analytically predict the extent to
which the sidelobe levels in MVDR beamformers are likely to rise
when diagonal loading is applied to compensate for finite sample
size constraints in large arrays.

Sections 2 and 3, respectively, introduce the classical and the
diagonally loaded MVDR beamformer. Section 4 presents some
results using infinite random matrix theory that will be used in
Section 5 to derive the analytical expressions for the bias in asymp-
totically large arrays. Simulations in Section 6 demonstrate how
these asymptotic expressions are accurate for predicting the bias
even when the arrays are finite dimensional. The conclusions are
summarized in Section 7.

∗This work was supported by ONR Grant N00014-00-1-0048

2. THE MVDR BEAMFORMER

The MVDR algorithm, like many other adaptive algorithms, forms
the sample covariance matrix K̂ from the M received snapshots
of time samples and frequency bins near the center frequency of
interest. This sample covariance matrix is given by

K̂ =
1

M

MX
i=1

xix
H
i (1)

where xi are the N ×1 snapshot vectors. The MVDR beamformer
is then given by

P̂ (u) =
1

V H(u)K̂−1V (u)
(2)

where V (u) is the manifold vector. If the elements of xi are as-
sumed to be independent identically distributed (i.i.d.) complex
Gaussian random variables with mean zero and variance one, then
K̂ is simply the extensively studied [7,8] (“pure”) Wishart matrix .
Using this knowledge, Capon and Goodman demonstrated [9] that
P̂ (u) has a complex, chi-squared distribution with M −N +1 de-
grees of freedom. This leads to their well-known and extensively
used expressions for the bias and variance of the MVDR beam-
former outputs. These are, respectively,

Bias = N E[P̂ (u)] =
M − N + 1

M
(3)

Variance = N σ2
P̂ (u) =

M − N + 1

M2
. (4)

Note the bias and variance expressions in (3) and (4) assume that
the manifold vector is normalized such that V H(u)V (u) = N .

Equations (3) and (4) are important for array processing be-
cause they help analytically characterize how a limited number of
snapshots M affect the performance of the MVDR beamformer.
In particular, since K̂ was modelled as a Wishart matrix, the ex-
pressions allow us to characterize the performance of the MVDR
beamformer, in an admittedly ad-hoc manner, under broad sector
nulling. In a practical setting these expressions are important and
widely used, because they predict the sidelobe levels due to snap-
shot constraints when forming the sample covariance matrix.

3. DIAGONAL LOADING

The MVDR beamformer involves explicitly computing the sample
covariance matrix in (1). In the snapshot deficient case, K̂ is rank
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deficient when M < N or poorly conditioned with low eigenval-
ues for M ≈ N . In many realistic operating environments, this
snapshot deficiency cannot be overcome because of physical or
stationarity constraints. Hence, diagonal loading is applied to the
sample covariance matrix which is replaced by

K̂(δ) = K̂ + δI. (5)

With this, the weight vector of the MVDR processor is given by

w(u | δ) =
K̂−1(δ)V (u)

V H(u)K̂−1(δ)V (u)
. (6)

The MVDR beam output can be calculated in two ways. These are
given by

P̂1(u) = wH(u | δ)K̂ w(u | δ) (7)

P̂2(u) =
1

V H(u)K̂−1(δ)V (u)
. (8)

Of the two ways above, (7) is the most extensively used method
since (8) has been observed to have a detrimental impact on the
detectability of low level signals as a consequence of the increased
sidelobe levels. Except for the very special, and practically unreal-
istic situation, of a single snapshot, there are no published analytic
results [1] for the bias of the MVDR beam outputs in (7) and (8)
for the snapshot deficient case.

Though the MVDR beamformer is amongst the oldest and
most extensively used adaptive array processing algorithm, analyt-
ically characterizing its performance due to finite snapshots con-
straints has remained an open problem, as Baggeroer and Cox state
in [1]. Before we analyze its performance in a specific, though
useful, scenario we will derive some expressions using infinite ran-
dom matrix theory that will turn out to be useful later on.

4. INFINITE RANDOM MATRIX THEORY

For an N × N matrix AN , the eigenvalue distribution function
(e.d.f.) F AN (x) is defined as

F AN (x) =
Number of eigenvalues of AN ≤ x

N
. (9)

As defined, the e.d.f. is right continuous and possibly atomic i.e.
with step discontinuities at discrete points. In practical terms, the
derivative of (9), referred to as the (eigenvalue) probability dis-
tribution function (p.d.f.), is simply the appropriately normalized
histogram of the eigenvalues of AN .

The moments of the matrix AN are defined as

MAN
k ≡ ϕ(Ak

N) =
1

N
tr(Ak

N) =

Z
xkdF AN (x). (10)

Theorem 1 (The Marčenko-Pastur distribution [3–5]). Let GN

be an N × M matrix with i.i.d. zero mean unit variance el-
ements whose higher order moments are bounded as well. Let
N/M → c > 0 as M, N → ∞. Let WN (c) = 1/M GG∗ denote
an M ×N “generalized” 1 Wishart matrix. Then, the e.d.f. F WN

1It is a “pure” Wishart matrix when the i.i.d. elements are normally
distributed.

strongly converges as M, N → ∞ to the (non-random) distribu-
tion function FW (x) given by

dF W (x)

dx
= max

„
0, 1 − 1

c

«
δ(x)

+

p
(x − b−)(b+ − x)

2πxc
I[b−,b+] (11)

where, b± = (1±√
c)2 and I[b−,b+] is the indicator function that

is equal to 1 for b− < x < b+ and 0 elsewhere.

Furthermore, when WN is a “pure” Wishart matrix, its eigen-
vectors will be Haar distributed for all N [8]. When WN is a
“generalized” Wishart matrix, its eigenvectors will be Haar dis-
tributed [10] when N → ∞.

Consider, now, the N × N matrix DN = (WN (c) + δ I)−1.
The eigenvalues of the matrix DN can be deterministically in-
ferred from the eigenvalues of the matrix WN . Hence, the con-
vergence of the e.d.f. FWN (x) implies convergence of the e.d.f
F DN (x) as M, N → ∞. Additionally the eigenvectors of DN

will also be Haar distributed. We are, however, interested in the
limiting moments of the matrix DN . We can choose to derive the
limiting e.d.f F D(x) from F W (x) in (11) and then compute its
moments using (10). Alternately, the limiting moments of DN can
be directly expressed in terms of the limiting e.d.f. dFW (x) as
simply

ϕ(Dk) = lim
N→∞

ϕ(Dk
N ) =

Z
1

(x + δ)k
dF W (x). (12)

The second term on the right hand side of (11) can, with an ap-
propriate change of variables, be rewritten as a Beta distribution
whose properties, including the moments, are well known [11,12].
The first and second limiting moments of DN can hence, with
some tedious but relatively straightforward algebra, be expressed
as

ϕ(D) =
−1 + c − δ +

√
1 − 2 c + 2 δ + c2 + 2 c δ + δ2

2c δ
(13)

ϕ(D2) =
1 + c δ + c

√
c2 − 2 c + 2 c δ + 1 + 2 δ + δ2

2
√

c2 − 2 c + 2 c δ + 1 + 2 δ + δ2cδ2

+
c2 −√

c2 − 2 c + 2 c δ + 1 + 2 δ + δ2 + δ − 2 c

2
√

c2 − 2 c + 2 c δ + 1 + 2 δ + δ2cδ2
.

(14)

We note that a more elegant way of obtaining moments of
random matrices, such as DN in this case, without having to re-
sort to cumbersome integration is to use the techniques developed
in [2, 13] instead. As we shall shortly see, these moments and a
random matrix lemma that we will derive next, will prove to be
important in our analysis of the bias of the MVDR beamformer.

Lemma 1. Let V (u) be an N × 1 complex manifold vector with
V H(u)V (u) = N . Let DN be an random matrix independent of
V (u) whose e.d.f. converges to FD(x) as N → ∞ and whose
eigenvectors are Haar distributed. Then,

lim
N→∞

E[V H(u)Dk
NV (u)] = tr(Dk) = N ϕ(Dk). (15)

where ϕ(Dk) =
R

xk dF D(x) is the limiting moment of DN .
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Fig. 1: Bias, B1, of the diagonally loaded MVDR beamformer
output obtained using (7) for N = 100 and c = N/M compared
with experimental values averaged over 1000 trials.

Proof. Let DN be written as DN = QN LN Q∗
N where QN is

a Haar unitary matrix [8] and LN is a diagonal matrix. Since
the e.d.f. of DN converges as N → ∞ to the non-random dis-
tribution function FD(x), the e.d.f. of the diagonal matrix LN

will also converge to FL(x) = F D(x) as N → ∞. Hence,
limN→∞ ϕ(Lk

N ) = ϕ(Lk) = ϕ(Dk). Furthermore,

E[V H(u)Dk
NV (u)] = E[V H(u)QN Lk

N QH
NV (u) (16)

= E[tr(Lk
NQH

NV (u)V H(u)QN))] (17)

= E[tr(Lk
N q qH)] (18)

where q = QH
NV (u) is a N×1 vector with E[qqH ] = I . Since the

trace and expectation commute, and LN and qqH are independent
of each other, (18) can be rewritten as

lim
N→∞

E[V H(u)Dk
NV (u)] = lim

N→∞
tr(E[Lk

N ] E[qqH ]) (19)

= lim
N→∞

tr(E[Lk
N ] I) (20)

= lim
N→∞

E[tr(Lk
N)] (21)

= N ϕ(Lk) (22)

5. BIAS FOR ASYMPTOTICALLY LARGE ARRAYS

Let us assume,, for the rest of this analysis that M, N → ∞ so
that the e.d.f. and the moments of K̂, and K̂(δ) are non-random.
When M < N or M ≈ N , the matrix K̂ given by (1) is replaced
by K̂(δ) = K̂ + δ I . This is simply the matrix DN we discussed
earlier. The resulting MVDR beamformer may then be computed
using either (7) or (8).
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Fig. 2: Bias B2 of the diagonally loaded MVDR beamformer out-
puts obtained using (8) for N = 100 and c = N/M compared
with experimental values averaged over 1000 trials.

5.1. Case 1

The MVDR output in the sidelobe region given by (7) can be writ-
ten after substituting the expression for w(u | δ) as

P̂1(u) =
V H(u)K̂−1(δ)K̂K̂−1(δ)V (u)„

V H(u)K̂−1(δ)V (u)

«2 . (23)

As M, N → ∞, both the numerator and the denominator of (23)
are non-random . This means that the numerator and the denom-
inator can be evaluated separately and then substituted into (23)
to obtain the required expression for P̂1(u). By Lemma 1, the
denominator of (23) can be expressed as

„
V H(u)K̂−1(δ)V (u)

«2

=

„
N ϕ(K̂−1(δ))

«2

. (24)

Since K̂−1(δ) = DN , ϕ(K̂−1(δ)) is given by (13). Hence to
obtain the expression for P̂1(u) it is necessary to evaluate the nu-
merator of (23). Since K̂(δ) = K̂ + δ I , so that K̂ = K̂(δ)− δ I ,
the numerator of (23) can be written as

V H(u)K̂−1(δ)K̂K̂−1(δ)V (u) =

V H(u)

„
K̂−1(δ) − δ K̂−2(δ)

«
V (u) (25)

which can be rewritten using Lemma 1 as simply.

V H(u)K̂−1(δ)K̂K̂−1(δ)V (u) =

N

„
ϕ(K̂−1(δ)) − δ ϕ(K̂−2(δ))

«
. (26)

There are two terms on the right hand side of (26). The expres-
sion for ϕ(K̂−1(δ)) is given by (13) while the expression for
ϕ(K̂−2(δ)) is given by (14). Hence, the relationships in (26),(14),(24)
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and (13) can be used to obtain the denominator and numerator
respectively of the expression in (23). These values can then be
substituted in (23) to obtain an expression for P̂1(u) using some
tedious yet straightforward algebra. If the bias of (7) were defined
as B1 = N P̂1(u) then it can easily shown that the required ex-
pression is given by

B1 =

`−√
c2 − 2 c + 2 cδ + 1 + 2 δ + δ2 + c + 1 + δ

´
`−c + 1 + δ −√

c2 − 2 c + 2 cδ + 1 + 2 δ + δ2
´2

× 2 c δ2

√
c2 − 2 c + 2 cδ + 1 + 2 δ + δ2

. (27)

5.2. Case 2

Here the MVDR output under diagonal loading in the sidelobe re-
gion given by (8) can be written using Lemma 1 as

P̂2(u) =
1

V H(u)K̂−1(δ)V (u)

=
1

N ϕ(K̂−1(δ))
.

(28)

Substituting the expression for ϕ(K̂−1(δ)) = ϕ(DN ) given by
(13) in (28) will give us an expression for P̂2(u). If the bias were
to be defined as B2 = NP̂2(u) then the bias of the MVDR output
given by (8) is simply

B2 =
2c δ

(−1 + c − δ +
√

1 − 2 c + 2 δ + c2 + 2 c δ + δ2)
. (29)

When δ = 0, it can be shown, upon using L’Hospital’s Rule, that
(29) reduces to B2 = 1 − c = 1 − N/M which is simply the
Capon-Goodman result in (3) for large N .

Note that as M, N → ∞, P̂1(u), and P̂2(u) become deter-
ministic with variance zero. It is possible to analyze the variance
of the MVDR outputs in the sidelobe region formed using (7) and
(8) for finite M, N . The techniques involved are described in [2].

6. SIMULATION RESULTS

Equations (27) and (29) are expressions for the bias of the MVDR
beamformer outputs in the sidelobe region as M, N → ∞. Fig-
ures 1 and 2 compare the analytical expressions in (27) and (29)
(solid line) with 1000 realizations (triangles) of the diagonally
loaded beamformer with N = 100 for a different range of val-
ues for δ and c = N/M . Given the excellent agreement exhib-
ited in these figures, it is clear that though these expressions were
derived using infinite random matrix techniques, they accurately
predict the bias of the MVDR beamformer outputs under diagonal
loading even when M and N are finite.

7. CONCLUSIONS

Closed form analytical expressions for the bias of the diagonally
loaded MVDR beamformer outputs in the sidelobe region have
been derived that are exact for asymptotically large arrays. Nu-
merical simulations have been used to justify the validity of these
asymptotic expressions for finite dimensional arrays as well. While
the problem of determining the bias under the presence of an ar-
bitrary number of interferers at arbitrary positions (relative to the

steering direction) remains open, our expressions help provide an
answer, unknown previously, in a scenario that is of relevance.

ACKNOWLEDGEMENTS
We would like to thank Professor Art Baggeroer and Dr. Jim
Preisig for their feedback and encouragement.

————————————————————————-

8. REFERENCES

[1] A. B. Baggeroer and H. Cox, “Passive sonar limits upon
nulling multiple moving ships with large aperture arrays,”
in Conference Record of the Thirty-Third Asilomar Confer-
ence on Signals, Systems, and Computers, Pacific Grove,
CA, 1999, vol. 1, pp. 103–108.

[2] R. Rao Nadakuditi and Alan Edelman, “The polynomial
method for random matrices.,” Preprint.
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