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ABSTRACT

In this paper, we improve the performance of robust linear re-
ceivers for multiuser multiple-input multiple-output (MIMO) wire-
less systems by exploiting the inherent structure of orthogonal spa-
ce-time block codes (OSTBCs). This particular structure results in
a worst-case optimization problem with structured uncertainty set.
Exploiting this structure, an improved robust linear receiver with a
combination of fixed diagonal loading and adaptive non-diagonal
loading of the data covariance matrix is obtained.

1. INTRODUCTION

Space-time coding is a powerful approach to exploit spatial di-
versity and combat fading in MIMO wireless communication sys-
tems. OSTBCs [1]-[2] represent an attractive class of space-time
coding techniques because they enjoy full diversity and very low
complexity of the maximum likelihood (ML) decoding in the poi-
nt-to-point MIMO case.

In the multiuser MIMO case, the ML decoder becomes pro-
hibitively expensive. Motivated by this fact, several authors pro-
posed suboptimal linear receiver techniques for space-time coded
multiuser MIMO systems [3]-[6]. Unfortunately, all these tech-
niques assume that the exact channel state information (CSI) is
available at the receiver. In practice, this condition can be hardly
met because of a limited/outdated training, and the effects of mul-
ti-access interference (MAI) and noise.

Recently, a linear receiver based on the worst-case design has
been proposed in [7] to improve the robustness of symbol detection
against erroneous CSI. It has been shown that this robust receiver
provides substantial performance improvements with respect to the
linear receivers of [6]. However, the inherent structure of OSTBCs
is not exploited in [7] and, as a result, the design of [7] appears to
be overly conservative.

In this paper, we propose a new robust linear receiver which,
similarly to the receiver of [7], resorts to the worst-case design,
but additionally exploits the specific structure of OSTBCs. This
results in a worst-case optimization problem with structured uncer-
tainty set. Using this approach, an improved robust linear receiver
is obtained. The proposed receiver amounts to a combination of
fixed diagonal loading and adaptive non-diagonal loading of the
data covariance matrix.

Simulation results validate a substantially improved perfor-
mance of the proposed linear receiver as compared to the receiver
of [7].

2. BACKGROUND

Let us consider an uplink multiuser MIMO communication sys-
tem. The transmitters are assumed to have the same number of
transmitting antennas and to encode information-bearing symbols
using the same OSTBC1. The received signal is given by

Y =
P∑

p=1

XpHp + V (1)

where Y � [yT (1) · · · yT (T )]T , Xp � [xT
p (1) · · · xT

p (T )]T ,
and V � [vT (1) · · · vT (T )]T are the matrices of the received
signals, transmitted signals of the pth transmitter, and noise, re-
spectively, Hp is the N × M complex channel matrix between
the pth transmitter and the receiver, P is the number of transmit-
ters, T is the block length, and (·)T denotes the transpose. Here,
y(t) � [y1(t) · · · yM (t)], xp(t) � [xp,1(t) · · · xp,N (t)], and
v(t) � [v1(t) · · · vM (t)] are the complex row vectors of the re-
ceived signal, transmitted signal of the pth user, and noise, respec-
tively. Each of the information-bearing symbols is assumed to be
drawn from a constant modulus constellation.

We denote complex information-bearing symbols of the pth
user prior to space-time encoding as sp,1, sp,2, . . . , sp,K . It can
be readily verified that the matrix X(sp) can be written as [6]-[7]

X(sp) =
K∑

k=1

(CkRe{sp,k} + DkIm{sp,k}) (2)

where Ck � X(ek), Dk � X(jek), j =
√−1 and ek is the

K × 1 vector having one in the kth position and zeros elsewhere.
Using (2), one can rewrite (1) as [6]

Y =
P∑

p=1

A(Hp) sp + V (3)

where the “underline” operator for any matrix P is defined as

P �

[
vec{Re(P)}
vec{Im(P)}

]
(4)

and vec{·} is the vectorization operator stacking all columns of a
matrix on top of each other. Here, the 2MT × 2K real matrix
A(Hp) is defined as [6]

A(Hp) = [C1Hp · · ·CKHp D1Hp · · ·DKHp]

� [a1(Hp) · · · a2K(Hp)]

1These assumptions are only needed for notational simplicity and can
be relaxed, see [6].
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Using the array-processing-type model (3) and assuming that
the first transmitter is the transmitter-of-interest, we can express
the output vector of a linear receiver as [6]-[7]

ŝ1 = W
T
Y (5)

where W = [w1 w2 · · · w2K ] is the 2MT × 2K real matrix of
the receiver coefficients and ŝ1 is the estimate of the vector s1 at
the receiver output. The vector wk can be interpreted as the weight
vector for the kth entry of s1.

Given the matrix W, the estimate of the vector of information-
bearing symbols of the transmitter-of-interest can be computed as
ŝ1 = [IK jIK ] ŝ1.

The similarity of the vectorized multiuser MIMO model (3)
and models used in array processing gives an opportunity to de-
sign the matrix W using minimum variance (MV) principle. In
particular, in [6] it has been proposed to estimate each entry of s1

by minimizing the receiver output power while preserving a unity
gain for this particular entry of s1, that is,

min
wk

w
T
k R̂wk s.t. a

T
k (H1)wk = 1 for all k = 1, . . . , 2K (6)

where R̂ = 1

J

∑J

i=1
Yi Yi

T is the sample estimate of the 2MT

×2MT covariance matrix R � E{Y YT } of the vectorized data
(3) , Yi is the ith received data block, J is the number of data
blocks available, and E{·} denotes the statistical expectation.

The solution to (6) is given by [6]

wMV,k =
R̂−1ak(H1)

aT
k (H1)R̂−1ak(H1)

, k = 1, . . . , 2K (7)

To improve the performance of (7) in the case of small sample
size, a fixed diagonal loading (DL) has been used in [6]. The DL-
based modification of the MV receiver (7) can be written as

wDLMV,k =
(R̂ + γI2MT )−1ak(H1)

aT
k (H1)(R̂ + γI2MT )−1ak(H1)

, k = 1, . . . , 2K

(8)
It can be seen that in the MV receiver design (8), the CSI

knowledge is required. However, in practice it is unrealistic to
have the exact CSI at the receiver. Therefore, the performance of
the MV receiver (8) may degrade significantly due to CSI errors
[7]. To provide robustness against CSI errors, a modification of
the MV receiver (7) based on the worst-case performance opti-
mization has been proposed in [7]. The weight vector wk of the
latter robust receiver has been obtained in [7] as a solution to the
following constrained optimization problem:

min
wk

w
T
k R̂wk s.t. min

‖ek‖≤ε
w

T
k (ak(Ĥ1) + ek) ≥ 1 (9)

where ek = ak(H1)−ak(Ĥ1) is the vector of mismatch between
the true ak(H1) and its presumed value ak(Ĥ1), and ε is a known
constant which upper-bounds the Frobenius norm of the CSI error
as ‖H1 − Ĥ1‖ ≤ ε. Using the Lagrange multiplier method, the
solution to (9) can be obtained from the equation [7]

2R̂wk + µεwk/‖wk‖ = µak(Ĥ1) (10)

where µ is the unknown Lagrange multiplier. To get around the
problem of computing µ, one can use the fact that each of the
information-bearing symbols is drawn from a constant modulus

constellation. In this case, each wk can be arbitrarily rescaled
without affecting the performance of a linear receiver. Using this
fact and applying the rescaling wk := 2wk/µ, equation (10) can
be rewritten as [7]

wk =
(
R̂ +

ε

‖wk‖I2MT

)−1

ak(Ĥ1) (11)

where the term (ε/‖wk‖)I2MT can be viewed as an adaptive diag-
onal loading of the matrix R̂. To solve (11), a simple Newton-type
technique of [9] can be used, see also [7].

A serious shortcoming of the design of (11) is that the inher-
ent structure of the mismatch vector ek is ignored in (9). There-
fore, the worst-case performance optimization in (9) may lead to
an overly conservative design, which can cause unnecessary degra-
dation of the receiver performance.

3. EXPLOITING THE STRUCTURE OF UNCERTAINTY
IN ROBUST RECEIVER DESIGN

In this section, we develop a new modification of the approach (6)
which is robust against imperfect CSI at the receiver and which, in
contrast to (11), exploits the inherent OSTBC-related structure of
the mismatch vector ek.

First, let us obtain a relationship between ak(H1) and H1 ex-
plicitly by using the structure of OSTBCs. Let

Gk �

{
Ck, k = 1, . . . , K

Dk−K , k = K + 1, . . . , 2K

Using the definition of the underline operator (4), we have

ak(H1) =

[
vec{Re(GkH1)}
vec{Im(GkH1)}

]

=

[
Re(IM ⊗ Gk) −Im(IM ⊗ Gk)
Im(IM ⊗ Gk) Re(IM ⊗ Gk)

][
vec{Re(H1)}
vec{Im(H1)}

]

= Ψkh1 (12)

where

Ψk �

[
Re(IM ⊗ Gk) −Im(IM ⊗ Gk)
Im(IM ⊗ Gk) Re(IM ⊗ Gk)

]
(13)

is a 2MT × 2MN real-valued matrix, and h1 � H1.
Since for any OSTBC GH

k Gk = IN [2], one can easily prove
from (13) that for any OSTBC

Ψ
T
k Ψk = I2MN (14)

Note that for the Alamouti code [1], N = T = 2 and Ψk is a
square matrix. Using the property (14), we have that in this case
Ψk is a unitary matrix.

Next, let us consider the error matrix ∆1 � H1 − Ĥ1 be-
tween the true channel matrix H1 and its presumed (e.g., esti-
mated) value Ĥ1 and let the Frobenius norm of this error matrix
be upper bounded by a known constant ε, that is,

‖∆1‖ ≤ ε (15)

Using the linearity of the underline operator (4), we have

ak(H1) = ak(Ĥ1) + ak(∆1) = ak(Ĥ1) + Ψkd1 (16)
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where d1 � ∆1.
The sought robust linear receiver should minimize the output

power subject to the constraint that the distortionless response is
maintained for any estimate Ĥ1 of the channel matrix H1 that
satisfies (15). To combat the finite-sample effects, we additionally
replace the minimization of the output power with minimization
of the worst-case output power [10]. Then, the weight vector wk

(k = 1, . . . , 2K) of our robust linear receiver can be obtained as
the solution to the following constrained optimization problem:

min
wk

max
‖∆‖≤γ

w
T
k (R̂ + ∆)wk

s.t. min
‖d1‖≤ε

w
T
k (ak(Ĥ1) + Ψkd1) ≥ 1 (17)

where ∆ is the covariance matrix mismatch due to finite-sample
effects. The main difference between (17) and (9) is that the un-
structured uncertainty ek in (9) is replaced by the structured un-
certainty ẽk � Ψkd1. Note that the structure of the OSTBC is
contained in Ψk. Taking this structure into account in (17) re-
duces the set of all possible values of ek to a smaller subset of the
values which ẽk can take.

Now, let us solve the problem (17). The left hand side of the
inequality constraint in (17) can be written as

min
‖d1‖≤ε

w
T
k (ak(Ĥ1)+Ψkd1) = w

T
k ak(Ĥ1)−ε‖ΨT

k wk‖ (18)

The equality holds if d1 = −εΨT
k wk/‖ΨT

k wk‖. Using this fact
and take into account that [10]

max
‖∆‖≤γ

w
T
k (R̂ + ∆)wk = w

T
k (R̂ + γI2MT )wk (19)

the optimization problem (17) can be equivalently written as

min
wk

w
T
k (R̂ + γI2MT )wk

s.t. w
T
k ak(Ĥ1) − ε‖ΨT

k wk‖ ≥ 1 (20)

Using the technique developed in [8], the problem (20) can be con-
verted into the following second-order cone programming (SOCP)
problem:

min
wk,τ

τ s.t. ‖Uwk‖ ≤ τ (21)

ε‖ΨT
k wk‖ ≤ w

T
k ak(Ĥ1) − 1

where U is an upper triangular matrix from the Cholesky decom-
position UT U of R̂ + γI2MT . The complexity of solving the
problem (21) using interior point method is O(M3T 3).

An intuitive interpretation of the problem (20) can be obtained
using the Lagrange multiplier method. The Lagrangian function L
can be written as

L = w
T
k (R̂ + γI2MT )wk − µ(wT

k ak(Ĥ1) − ε‖ΨT
k wk‖ − 1)

(22)
where µ > 0 is the unknown Lagrange multiplier. Using (22), we
obtain that the solution to (20) can be found from the equation

(
2R̂ + 2γI2MT + µε

ΨkΨ
T
k

‖ΨT
k wk‖

)
wk = µak(Ĥ1) (23)

To get around the problem of computing the Lagrange multiplier
µ, let us use the same trick as in (11). That is, let us exploit again

the fact that each of the information-bearing symbols is drawn
from a constant modulus constellation. As mentioned above, in
this case each wk can be arbitrarily rescaled without affecting the
performance of a linear receiver. Applying the rescaling wk :=
2wk/µ, equation (23) can be rewritten as

wk =

(
R̂ + γI2MT + ε

ΨkΨ
T
k

‖ΨT
k wk‖

)−1

ak(Ĥ1) (24)

The term γI2MT + εΨkΨ
T
k /‖ΨT

k wk‖ in (24) can be interpreted
as a combination of fixed diagonal loading and adaptive non-di-
agonal loading of the data covariance matrix R̂. Interestingly, the
non-diagonal loading term depends on the matrix Ψk which, in
turn, is entirely determined by the structure of the OSTBC. In the
particular case of the Alamouti code, Ψk is unitary and the load-
ing becomes fully diagonal. Moreover, for the Alamouti code we
have ‖ΨT

k wk‖ = ‖wk‖. Therefore, in this particular case the
proposed receiver (24) reduces to the receiver (11) with additional
fixed diagonal loading term γI2MT .

Because of the (generally) non-diagonal term in (24), we can-
not easily solve this equation. Therefore, we resort to the SOCP-
based solution to (24) which can be obtained using (21) and inter-
ior-point method.

4. SIMULATION RESULTS

In simulations, we use the 3/4-rate (K = 3; T = 4) OSTBC from
[2] and assume P = 2 transmitters with N = 3 antennas per trans-
mitter. The receiver has M = 4 antennas. It is assumed that the
interfering transmitter uses the same OSTBC as the transmitter-
of-interest. Throughout the simulations, the interference-to-noise
ratio (INR) is equal to 10 dB and the QPSK modulation scheme
is used. All plots are averaged over 1000 independent simula-
tion runs. In each simulation run, the elements of the true chan-
nel matrices H1 were independently drawn from a complex Gaus-
sian random generator with zero mean and unit variance, whereas
each element of the presumed channel matrix Ĥ1 was generated
by drawing a complex Gaussian random variable with zero mean
and the variance of 0.1 and adding this variable to a corresponding
element of the matrix H1. The imperfect CSI case is assumed,
i.e., all the receivers tested use the presumed channel matrix rather
than the true one.

The proposed robust receiver (21) is compared to the DLMV
receiver (8) and the robust receiver (11). To make the latter re-
ceiver robust against the finite-sample effects and consistent to the
other receivers tested, the fixed diagonal loading with the factor γ
has been added to it. For all receivers, the parameter γ = 5σ2 is
chosen where σ2 is the noise variance. For the receivers (11) and
(21), the parameter ε = ‖Ĥ1‖/2 has been chosen.

In Fig. 1, the symbol error rates (SERs) of these linear re-
ceivers are displayed versus the SNR for J = 200. In the same
figure, we also show the performance of the receivers (11) and
(21) when the true data covariance matrix R is used instead of the
sample matrix R̂. These two receivers do not correspond to any
practical situation and are displayed for the sake of comparisons
only. From Fig. 1 it follows that, as expected, the proposed robust
receiver (21) substantially outperforms the receiver (11) both in
the cases when the true and sample covariance matrix is used. We
also observe from this figure that the performance of the DLMV
receiver severely degrades at high SNRs. This is the effect of fixed
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diagonal loading which cannot be optimal for all values of SNR
[10].

Fig. 2 shows the SERs of the same receivers versus the number
of data blocks J for SNR = 15 dB. We can see that the proposed
receiver (21) outperforms the robust receiver (11) if J > 100.

Fig. 3 shows the receiver SERs versus the parameter ε/‖Ĥ1‖.
It can be seen that the performance of both the receivers (11) and
(21) is not very sensitive to the choice of this parameter. Note also
that the performance of the DLMV receiver in Figs. 2 and 3 is
much worse than that of the receivers (11) and (21).

5. CONCLUSIONS

In this paper, a new robust linear receiver for joint space-time
decoding and interference rejection in multiuser MIMO wireless
communication systems has been designed. The proposed receiver
is based on the worst-case performance optimization and exploits
the inherent structure of the OSTBCs. Simulation results show an
improved robustness of the proposed receiver against mismatched
CSI.
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