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ABSTRACT

For two-transmitter systems, there are (full-rate) orthogonal space-
time block codes (O-STBC). For four-transmitter systems, there
are (full-rate) quasi-orthogonal space-time block codes (QO-STBC).
The orthogonality of such codes makes a decoder attractively sim-
ple with only little compromise of optimality of coding perfor-
mance. A complete family of O-STBC is well understood. But
for QO-STBC, only ad hoc examples have been reported in the
literature. In this paper, we provide a systematic construction of
a complete family of 4 × 4 QO-STBC. We show that there are
only three independent QO-STBC and all other QO-STBC can be
constructed by trivial variations of any three independent codes.
Indeed, all 4 × 4 QO-STBC in the literature can be constructed in
such a way. Furthermore, we show a connection between three in-
dependent QO-STBC and the Hurwitz-Radon families of matrices.
A complete set of the HR families of size four is also discovered.

1. INTRODUCTION

Design and analysis of space-time block codes (STBC) for multiple-
transmitter systems have been an active field of research since the
work published in [1] and [18]. STBC is aimed to exploit the chan-
nel diversity between multiple transmitters and multiple receivers
to improve the rate of reliable data transmission and/or the perfor-
mance of bit error rate. STBC is also useful for cooperative relays
in wireless mobile networks [2], [10], [8], [7].

A detailed review of STBC is available in [4] and [11]. For
two-transmitter systems, the most prominent STBC are the Alam-
outi -type codes that are orthogonal and hence allow the maximum
likelihood (optimal) detection to be performed independently on
each of individual symbols. Unfortunately, such an orthogonal
code does not exist for more than two transmitters unless a re-
duction of data rate is tolerated [17], [20]. However, for four-
transmitter systems, there are (quasi-orthogonal) QO-STBC that
allow the maximum likelihood detection to be performed inde-
pendently on pairs of symbols [9]. With a simple modification
of symbol constellations, an QO-STBC can be made to achieve a
full diversity and a high coding gain [15], [14], [5], [16].

Despite the attractive features of QO-STBC, the existing QO-
STBC reported in the literature are ad hoc. They are ad hoc be-
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cause a question like “how many more QO-STBC are there?” is
not answered. In this paper, we provide a systematic construction
of a complete family of (4× 4) QO-STBC. We show that there are
only three independent QO-STBC codes and all other QO-STBC
can be constructed by trivial variations of any three independent
codes. Specifically, given a QO-STBC matrix S(s1, s2, s3, s4) of
four symbols (s1, s2, s3, s4), numerous QO-STBC matrices can
be constructed as follows:

C(s1, s2, s3, s4) = PrS(±s
(∗)
k1

,±s
(∗)
k2

,±s
(∗)
k3

,±s
(∗)
k4

)Pc (1)

where (k1, k2, k3, k4) is a permutation of (1, 2, 3, 4), ± is a plus
or minus sign, the superscript (∗) denotes the presence or absence
of complex conjugation, Pr permutes the rows and/or reverses the
sign of none or some rows, and Pc permutes the columns and/or
reverses the sign of none or some columns. (Two codes are said
to be mutually dependent if they are related to each other via (1).)
Indeed, all 4 × 4 QO-STBC reported in the literature can be con-
structed in such a way. We will also show that all these three inde-
pendent codes can be constructed from the Hurwitz-Radon (HR)
families of matrices.

In Section 2, we review the HR families of (integer) matrices
and present a new theorem on the complete set of the HR families
of size four. In Section 3, we first present two more theorems. One
is that for any two 4 × 1 (linear-and-integer coded) vectors to be
orthogonal to each other, they must be orthogonal through pairs of
2 × 1 subvectors. The other is that only three independent codes
are necessary to produce a complete family of QO-STBC via (1).
In Section 4, we show the connections between three independent
codes and the QO-STBC matrices available in the literature. The
proofs of our theorems are outlined in the Appendix.

2. THE HR FAMILIES OF MATRICES

As shown in [3], within the space of L×L integer matrices, there is
a family of m matrices {A0, A1, ..., Am−1} satisfying: AkAT

k =
IL (the L × L identity matrix), Ak = −AT

k unless Ak = IL and
AT

k Al = −AT
l Ak (k �= l), where the maximum value mmax of

m is governed by L as follows. Let L = 2ab where b is odd,
a = 4c + d and 0 ≤ d ≤ 3, then mmax = 8c + 2d. Within such
a family, one member is IL.

A family of matrices defined above is called a Hurwitz-Radon
(HR) family of matrices. All HR matrices can be constructed from
the following elementary matrices P , Q and R [3]:

P =

�
0 1
1 0

�
; Q =

�
1 0
0 −1

�
; R =

�
0 1
−1 0

�
.
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For L = 2, an HR family consists of I2 and R. The Alamouti
code matrix can be constructed by using this HR family, i.e.,

C(s1, s2) = [Rx1 + jx2, x1 + jRx2] =

�
s1 s2

−s∗2 s∗1

�

where x1 and x2 are two 2× 1 real vectors, s1 = x1(2) + jx2(1)
and s2 = x1(1) + jx2(2).

For L = 4, a known HR family consists of the following four
matrices: Q0 = I4; Q1 = R ⊗ I2; Q2 = P ⊗ R; Q3 = Q ⊗ R
where ⊗ is the Kronecker product. But more generally, we have
discovered the following:

Theorem 1: All HR families of matrices of size four have
the following two possible forms: {Q0;±Q1;±Q2;±Q3} and
{Q0;±G1;±G2;±G3}where G1 = Q1[−I2⊗Q], G2 = Q2[Q⊗
(RP )], and G3 = Q3(Q ⊗ I2).

3. INDEPENDENT CODES OF QO-STBC

In this section, we show that only three independent codes are
needed for (1) to produce all QO-STBC matrices of the symbol
set (s1, s2, s3, s4) where each element in a code matrix is ±s

(∗)
k .

But first, we have the following theorem:
Theorem 2: Let s = r + ji be a 4 × 1 complex vector where

the first term is the real part and the second term is the imaginary
part. Define p = Trr + jTii where Tr and Ti are unitary integer

matrices. Then, this orthogonality sHp = 0 holds if and only if
a pair of elements in s is orthogonal to the corresponding pair in
p and the other pair of elements in s is orthogonal to the other
corresponding pair in p.

Given the above theorem, the next theorem follows:
Theorem 3: If used in (1), the following three independent

codes produce all possible QO-STBC matrices for the symbol set
(s1, s2, s3, s4) where each element in an QO-STBC matrix has the
form ±s

(∗)
k :

S1(s1, s2, s3, s4) =

�
��

s1 −s4 s∗2 −s∗3
s2 s3 −s∗1 −s∗4
s3 −s2 −s∗4 s∗1
s4 s1 s∗3 s∗2

�
��

S2(s1, s2, s3, s4) =

�
��

s1 s4 s∗2 −s∗3
s2 s3 −s∗1 s∗4
s3 s2 −s∗4 s∗1
s4 s1 s∗3 −s∗2

�
��

S3(s1, s2, s3, s4) =

�
��

s1 −s4 −s∗2 −s∗3
s2 s3 s∗1 −s∗4
s3 s2 −s∗4 s∗1
s4 −s1 s∗3 s∗2

�
��

All of the above three independent codes can be expressed in
terms of the HR matrices. Let the real and imaginary parts of each
symbol sk be expressed as sk = rk + jik. It is not difficult to
verify the following results. For the first independent code,

S1 = [Q0r1,−Q1r1, Q3r1,−Q2r1] +

j[Q2i1,−Q3i1,−Q1i1, Q0i1] (2)

where r1 = [r1, ..., r4]
T and i1 = [i3, i4,−i1,−i2]

T . For the
second independent code,

S2 = [−Q3Kr2, Q2r2, Q0Kr2, Q
T
1 r2] +

j[−Q0Ki2, Q
T
1 i2, Q3Ki2, Q2i2] (3)

where r2 = [−r2,−r1, r4, r3]
T , i2 = [i1,−i2, i3,−i4]

T , and
K = −I2 ⊗ Q. For the third independent code,

S3 = [G0r3,−G1Kr3,−G3r3,−G2Kr3] +

j[−G3i3,−G2Ki3, G0i3,−G1Ki3] (4)

where r3 = r1 and i3 = [i2,−i1, i4,−i3]
T .

4. THE PREVIOUSLY PUBLISHED QO-STBC

We now provide the specific expressions of the previously pub-
lished QO-STBC in terms of the above three independent codes.

4.1. From the first independent code

The code by Papadias and Foschini in [12] can be described as:

CPF (s1, s2, s3, s4) =

�
��

s1 s2 s3 s4

s∗2 −s∗1 s∗4 −s∗3
s3 −s4 −s1 s2

s∗4 s∗3 −s∗2 −s∗1

�
��

= P1S1(s
∗
2, s3, s1, s

∗
4)P2

where
P1 = P+(1,3),+(2,1),+(3,2),+(4,4)

P2 = P+(1,1),−(2,4),−(3,2),−(4,3).

Here, P±(i1,j1),±(i2,j2),±(i3,j3),±(i4,j4) denotes a matrix where
the entries at (i1, j1), (i2, j2), (i3, j3), (i4, j4) are±1 and all other
entries are zero.

One code given by Hou, Lee and Park, i.e., (20) in [6], can be
described by:

CHLP,1(s1, s2, s3, s4) =

�
��

s1 s2 s3 s4

−s2 s1 −s4 s3

−s∗3 s∗4 s∗1 −s∗2
−s∗4 −s∗3 s∗2 s∗1

�
��

= P3S1(s1,−s∗4,−s∗3,−s2)P4

where
P3 = P+(1,1),+(2,4),+(3,3),+(4,2)

P4 = P+(1,1),+(2,2),−(3,4),+(4,3).

4.2. From the second independent code

The code by Ran, Hou and Lee, i.e., (10) in [13], actually is:

CRHL(s1, s2, s3, s4) =

�
��

s1 s2 s3 s4

s∗2 −s∗1 −s∗4 s∗3
s∗3 −s∗4 −s∗1 s∗2
s4 s3 s2 s1

�
��

= S2(s1, s
∗
2, s

∗
3, s4)P5

where P5 = P+(1,1),+(2,4),+(3,2),−(4,3).
The second code by Hou, Lee and Park, i.e., (16) in [6], actu-

ally is:

CHLP,2(s1, s2, s3, s4) =

�
��

s1 s2 s3 s4

s2 s1 s4 s3

−s∗3 −s∗4 s∗1 s∗2
−s∗4 −s∗3 s∗2 s∗1

�
��

= P6S2(s1,−s∗4,−s∗3, s2)P7
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where P6 = P3 and P7 = P+(1,1),+(2,2),−(3,3),+(4,4).
The code by Tirkkonen, Boariu and Hottinen in [19] actually

is

CTBH(s1, s2, s3, s4) =

�
��

s1 s2 s3 s4

−s∗2 s∗1 −s∗4 s∗3
s3 s4 s1 s2

−s∗4 s∗3 −s∗2 s∗1

�
��

= P8S2(s1,−s∗2,−s∗4, s3)P9

where
P8 = P+(1,1),+(2,2),+(3,4),+(4,3)

P9 = P+(1,1),−(2,3),−(3,2),+(4,4).

4.3. From the third independent code

The code by Jafarkhani in [9] simply is

CJ(s1, s2, s3, s4) =

�
��

s1 s2 s3 s4

−s∗2 s∗1 −s∗4 s∗3
−s∗3 −s∗4 s∗1 s∗2
s4 −s3 −s2 s1

�
��

= S3(s1,−s∗2,−s∗3, s4)P10

where P10 = P+(1,1),−(2,4),+(3,2),+(4,3).

5. CONCLUSION

We have shown that using (1) together with only three independent
codes, one can produce all QO-STBC. This result unifies all pre-
viously published QO-STBC as well as numerous “hidden” QO-
STBC.

6. APPENDIX

6.1. Proof of Theorem 1

Here we describe all possible (non-identity) members in the HR
families of size 4. An HR matrix F of size four can be written as

F =

�
B1,1 B1,2

B2,1 B2,2

�
where Bi,l is a 2× 2 block matrix. Since

F T = −F we have BT
i,i = −Bi,i for i = 1, 2 and BT

1,2 +B2,1 =
0. Therefore B1,1 and B2,2 are either the zero matrices or the HR
matrices of 2 × 2. Since F is an integer matrix and unitary, each
column of F has one and only one entry of ±1 and all other entries
of the column are zero. Then, we have either

�
B1,1 = B2,2 = 0
BT

1,2 = −B2,1 �= 0
or

	

�

B1,1 is a 2 × 2 HR matrix
B2,2 is a 2 × 2 HR matrix
B1,2 = B2,1 = 0

(5)

Through an exhaustive search, we have found that any possible HR
matrix has to come from those defined in Theorem 1.

To show that Qi and Gi defined in Theorem 1 can not co-exist
in one family, we first observe that Gi = QiKi where Ki �= 0.
If Qi and Gi co-exist in one family, then QT

i Gi = −GT
i Qi. Com-

bining the above two equations, we have QT
i QiKi = −KT

i QT
i Qi,

i.e., Ki = 0, which is a contradiction. By a further exhaustive
search, we have found that Qi and Gl can not co-exist within a
family even if i �= l.

Therefore, the two possible structures shown in Theorem 1 are
applicable to all HR families of size four.

6.2. Proof of Theorem 2

Taking the real and imaginary parts of sHp = 0 separately, we

have t1 + t2 = 0 and t3 = 0 where t1 = sT
r Trsr , t2 = sT

i Tisi,
and t3 = sT

i Trsr − sT
i T T

i sr .
Because of the independence of t1 and t2, t1 + t2 = 0 implies

t1 = 0 and t2 = 0. Because both of the equations hold for any
vectors, we have Tr = −T T

r and Ti = −T T
i .

From t3 = 0, we have Tr = T T
i .

From t1 = 0, we have

4�
l=1

[

4�
i=1

sr(i)Tr,i,l]sr(l) = 0 ⇒
4�

l=1

±sr(il)sr(l) = 0 (6)

where Tr,i,l is the (i, l) entry of Tr , and among [Tr,1,l, . .., Tr,4,l]
T

there is only one non-zero entry, which is ±1 . We also know
il �= l, or otherwise (6) could not hold. For (6) to hold for any sr ,
the four terms in (6) must be divided into two groups, and the two
terms in each group cancel each other. In other words, the indices
of the two terms in each group must be (il, l) and (l, il). Without
loss of generality (up to a permutation of the symbols), these terms
can grouped as ±{sr(1)sr(2)−sr(2)sr(1)} and±{sr(4)sr(3)−
sr(3)sr(4)}. Then, we can write Tr = diag(±Q ,±Q) (up to a
permutation of the symbols). Furthermore, up to a sign change of
all symbols, there are two possible forms for Tr , i.e., diag(Q ,Q)
or diag(Q ,−Q).

Since Tr = T T
i , the corresponding Ti must be diag(−Q ,−Q)

or diag(−Q ,Q), respectively.
When Tr = diag(Q ,Q) and Ti = diag(−Q ,−Q), we have

p = [s∗2,−s∗1, s
∗
4,−s∗3]. When Tr = diag(Q ,−Q) and Ti =

diag(−Q ,−Q), we have p = [s∗2,−s∗1,−s∗4, s
∗
3]. In each of the

above two cases, we have the familiar form of 2× 2 orthogonality.

6.3. Proof of Theorem 3

Our proof is constructive. Without loss of generality, we will fix
the first column of our code matrix T to be [s1, s2, s3, s4]

T . Fur-
thermore, we will construct T such that its first two columns are
orthogonal to the last two columns. By using Theorem 2, we have
no more than the following two possibilities for T (up to the vari-
ations defined by (1)):

T1 =

�
��

s1 ∗ s∗2 ∗
s2 ∗ −s∗1 ∗
s3 ∗ −s∗4 ∗
s4 ∗ s∗3 ∗

�
�� or

T2 =

�
��

s1 ∗ −s∗2 ∗
s2 ∗ s∗1 ∗
s3 ∗ −s∗4 ∗
s4 ∗ s∗3 ∗

�
��

where ∗ (not in superscript) denotes a unspecified entry. From T1,
we have no more than the following two possibilities:

T1,1 =

�
��

s1 ∗ s∗2 −s∗3
s2 ∗ −s∗1 s∗4
s3 ∗ −s∗4 s∗1
s4 ∗ s∗3 −s∗2

�
�� or

T1,2 =

�
��

s1 ∗ s∗2 −s∗3
s2 ∗ −s∗1 −s∗4
s3 ∗ −s∗4 s∗1
s4 ∗ s∗3 s∗2

�
��
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Similarly, from T2, we have no more than another pair of possibil-
ities:

T2,1 =

�
��

s1 ∗ −s∗2 −s∗3
s2 ∗ s∗1 s∗4
s3 ∗ −s∗4 s∗1
s4 ∗ s∗3 −s∗2

�
�� or

T2,2 =

�
��

s1 ∗ −s∗2 −s∗3
s2 ∗ s∗1 −s∗4
s3 ∗ −s∗4 s∗1
s4 ∗ s∗3 s∗2

�
��

Adding all together, we have no more than the following four pos-
sibilities:

T1,1 =

�
��

s1 s4 s∗2 −s∗3
s2 s3 −s∗1 s∗4
s3 s2 −s∗4 s∗1
s4 s1 s∗3 −s∗2

�
�� ,

T1,2 =

�
��

s1 −s4 s∗2 −s∗3
s2 s3 −s∗1 −s∗4
s3 −s2 −s∗4 s∗1
s4 s1 s∗3 s∗2

�
�� ,

T2,1 =

�
��

s1 s4 −s∗2 −s∗3
s2 s3 s∗1 s∗4
s3 −s2 −s∗4 s∗1
s4 −s1 s∗3 −s∗2

�
�� ,

T2,2 =

�
��

s1 −s4 −s∗2 −s∗3
s2 s3 s∗1 −s∗4
s3 s2 −s∗4 s∗1
s4 −s1 s∗3 s∗2

�
�� .

Furthermore, it is easy to verify that

T1,2 = P11T2,1(s4, s2, s3, s1)P12

where
P11 = P+(1,4),+(2,2),+(3,3),+(4,1)

P12 = P+(1,1),+(2,2),−(3,4),−(4,3).

Therefore, we have only three independent codes: S1 = T1,2,
S2 = T1,1, and S3 = T2,2.

7. REFERENCES

[1] S. M. Alamouti, “A simple transmit diveristy technique for
wireless communications,” IEEE J. Select. Area Commun.,
vol. 16, pp. 1451–1458, Oct. 1998.

[2] P. A. Anghel, G. Leus, and M. Kaveh, “Multi-user space-
time coding in cooperative networks,” in Proc. of IEEE
ICASSP’2003, vol. IV, Hong Kong, April 2003, pp. 73–77.

[3] A. V. Geramita and J. Seberry, Orthogonal Designs,
Quadratic Forms and Hardamard Matrices - Lecture Notes
in Pure and Applied Mathematics. New York and Basel:
Marcel Dekker, 1979, vol. 43.

[4] D. Gesbert, M. Shafi, D. Shiu, P. Smith, and A. Naguib,
“From theory to practice: An overview of MIMO space-
time coded wireless systems,” IEEE Trans. Selected Areas
in Commun., vol. 21, no. 3, pp. 281–302, April 2003.

[5] N. Hassanpour and H. Jafarkhani, “A class of full diversity
space-time codes,” in Proce. of IEEE GLOBECOM, 2003,
pp. 3336–3340.

[6] J. Hou, M. H. Lee, and J. Y. Park, “Matrices analysis of
quasi-orthogonal space-time block codes,” IEEE commu. let-
ters, vol. 7, no. 8, pp. 385–387, August 2003.

[7] Y. Hua, Y. Chang, and Y. Mei, “A networking perspective of
mobile parallel relays,” in IEEE Workshop on Digital Signal
Processing, Taos Ski Valley, NM, August 1-4, 2004.

[8] Y. Hua, Y. Mei, and Y. Chang, “Wireless antennas - making
wireless communications perform like wireline communica-
tions,” in IEEE AP-S Topical Conference on Wireless Com-
munication Technology, Honolulu, Hawaii, Oct. 15-17, 2003.

[9] H. Jafarkhani, “A quasi-orthogonal space-time block code,”
IEEE Trans. Commun., vol. 49, no. 1, pp. 1–4, Jan 2001.

[10] J. N. Laneman and G. W. Wornell, “Distributed space-time-
coded protocols for exploiting cooperative diversity in wire-
less networks,” IEEE Transactions on Information Theory,
vol. 49, no. 10, pp. 2415–2425, October 2003.

[11] E. G. Larsson and P. Stoica, Space Time Block Coding for
Wireless Communications. Cambridge, U.K.: Cambridge
Univ. Press, 2003.

[12] C. B. Papadias and G. J. Foschini, “A space-time coding ap-
proach for systems employing four transmit antennas,” in
Proc. of IEEE ICASSP’2001, vol. 4, Salt Lake City, UT USA,
2001, pp. 2481–2484.

[13] R. Ran, J. Hou, and M. H. Lee, “Triangular non-orthogonal
space-time block code,” in Proceeding of the 57th IEEE
Semiannual Vehicular Technology Conference, Jeju Korea,
April 2003, pp. 292–295.

[14] A. Sezgin and E. A. Jorswieck, “On optimal constellation
for quasi-orthogonal space-time codes,” in Proc. of IEEE
ICASSP’2003, vol. IV, HongKong, April 2003, pp. 345–348.

[15] N. Sharma and C. B. Papadias, “Improved quasi-orthogonal
codes through constellation rotation,” IEEE Trans. Com-
mun., vol. 51, no. 3, pp. 332–335, March 2003.

[16] W. Su and X. G. Xia, “Signal constellations for quasi-
orthogonal space-time block codes with full diversity,” IEEE
Trans. on Information Theory, to appear.

[17] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time
block codes from orthogonal designs,” IEEE Trans. Inform.
Theory, vol. 45, no. 5, pp. 1456–1467, July 1999.

[18] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time
codes for high data rate wireless communication: Perfor-
mance criterion and code construction,” IEEE Trans. Inform.
Theroy, vol. 44, pp. 744–765, Mar. 1998.

[19] O. Tirkkonen, A. Boariu, and A. Hottinen, “Minimal non-
orthogonality rate 1 space-time block code for 3+ Tx anten-
nas,” in IEEE 6th Int. Symp. on Spread-spectrum Tech. Ap-
pli., NJIT, New Jersey, Sept. 2000, pp. 429–432.

[20] H. Wang and X. G. Xia, “Upper bounds of rates of complex
orthogonal space-time block codes,” IEEE Trans. on Infor-
mation Theory, vol. 49, no. 10, pp. 2788– 2796, Oct. 2003.

IV - 780

➡ ➠


