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ABSTRACT

We consider the problem of simultaneous estimation of the
channel state information (CSI) of several transmitters that use or-
thogonal space-time block codes to communicate with a single re-
ceiver. Based on the generalizations of the Capon and MUSIC
techniques, we propose two novel algorithms to estimate multi-
user MIMO channels. These algorithms estimate the subspace
spanned by the user channels blindly and use only a few training
blocks to extract the users CSI from this subspace.

1. INTRODUCTION

Point-to-point communications based on orthogonal space-time bl-
ock codes (OSTBC) have been extensively studied in the literature
[1], [2]. However, there are only a few papers where the problem
of joint decoding and multi-access interference (MAI) suppression
in OSTBC-based multiuser communication systems has been ad-
dressed [3]-[5]. In all these papers, it is assumed that the channel
state information (CSI) of the users-of-interest is available at the
receiver. This implies that training should be used to estimate the
user CSI. However, the use of training reduces the bandwidth effi-
ciency and, therefore, blind and/or semi-blind channel estimation
techniques are of great interest.

In this paper, we propose two novel methods to simultaneously
estimate the CSI of several transmitters that use OSTBCs to com-
municate with a single receiver. Our approach is based on the gen-
eralizations of the Capon and MUSIC techniques to the problem
of channel estimation in multiuser MIMO communications. It will
be shown that using such generalization, the subspace spanned by
the user channels can be estimated in a fully blind way. However,
to extract the user CSI from this subspace, a few training blocks
have to be used with the amount of training that is much smaller
than that required by the standard non-blind LS-based channel es-
timation method. Our simulation results show that, in addition to
an improved bandwidth efficiency, the proposed techniques also
have substantially lower channel estimation errors as compared to
the standard LS channel estimation method. Moreover, it is shown
that using the proposed semi-blind channel estimators in conjunc-
tion with the minimum variance (MV) linear multiuser receiver of
[5] improves its performance compared to the case when it uses
the standard non-blind LS channel estimator.

2. BACKGROUND

We assume that P synchronous multi-antenna transmitters com-
municate with a single multi-antenna receiver. All transmitters are
assumed to use the same OSTBC to encode the information sym-
bols and to have the same number of antennas, N . The receiver is
also assumed to have M antennas. The flat block-fading channel
is considered. Based on these assumptions, the received signal is
given by

Y =

P∑
p=1

X(sp)Hp + V

where Y is the T×M matrix of the received signals, sp is the K×
1 vector of the information symbols of the pth user, X(sp) is the
T×N matrix of its transmitted signals, Hp is the N×M matrix of
channel coefficients between the pth transmitter and the receiver,
V is the T × M noise matrix, and T denotes the block length.

We assume that the entries of matrices {Hp}P
p=1 are independent

random variables. This assumption implies that in the vector space

of all N × M complex matrices, the channel matrices {Hp}P
p=1

are linearly independent, almost surely1.
The matrix X(sp) is assumed to correspond to OSTBCs [2].

The T × N matrix X(s) is called an OSTBC if all elements of
X(s) are linear functions of the K complex variables s1, . . . , sK

and their complex conjugates, and if for any arbitrary s it satisfies

XH(s)X(s) = ‖s‖2IN where IN is the N × N identity matrix,

(·)H stands for the Hermitian transpose, and ‖ · ‖ denotes the Eu-
clidean norm. The matrix X(s) can then be written as

X(s) =
K∑

k=1

(CkRe{sk} + DkIm{sk}) . (1)

Here, the matrices Ck and Dk are defined, respectively, as Ck �
X(ek) and Dk � X(jek), where j =

√−1 and ek is the K × 1
vector having one in the kth position and zeros elsewhere. Using
(1), one can rewrite (2) as [5]

Y =

P∑
p=1

A(hp) sp + V (2)

where the “underline” operator for any matrix P is defined as

P �
[
vecT {Re(P)} vecT {Im(P)}]T

where vec{·} is the vec-
torization operator stacking all columns of a matrix on top of each
other, Re(·) and Im(·) denote, respectively, the real and the imag-

inary parts, and (·)T stands for the transpose. In (2), the channel

vector of the pth user is defined as hp � HP and the 2MT × 2K
real matrix A(hp) is given by

A(hp) � [C1Hp · · · CKHp D1Hp · · · DKHp]

� [a1(hp) a2(hp) · · · a2K(hp)] . (3)

This matrix has an important property that its columns have the
same norms and are orthogonal to each other [7]:

AT (hp)A(hp) = ‖hp‖2I2K . (4)

As A(hp) is linear in hp, there exist 2K real matrices {Φk}2K
k=1

with dimensions 2MT × 2MN such that

ak(hp) = Φkhp for k = 1, . . . , 2K . (5)

1This means that, with probability one, there does not exist any non-
zero vector c = [c1, . . . , cP ]T such that

∑P
p=1 cpHp = 0.
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Note that the matrices {Φk}2K
k=1 are OSTBC-specific and known.

Using (5), one can write

vec{A(hp)} = Φhp (6)

where the 4KMT × 2MN matrix Φ � [ΦT
1 · · ·ΦT

2K ]T .
Although the multiuser MIMO channel estimation techniques

considered below can be used in conjunction with any multiuser
receiver (including the computationally expensive ML receiver),
we will use them in conjunction with the MV linear receiver of [5]
because it is computationally much simpler than the ML receiver.

Any linear receiver for detecting the transmitted symbols of
the pth user can represented by the weight matrix W(hp) that is
applied to the received vectorized data Y to estimate sp as ŝp =

WT (hp)Y. To detect the transmitted symbols, the estimate ŝp =
[Ik jIk]ŝp has to be computed and then the kth transmitted symbol

should be detected as a point in the corresponding constellation
which is the closest one to the kth element of ŝp.

For the pth transmitter, the MV linear receiver of [5] is given
by

W(hp) = R−1
d A(hp)(AT (hp)R−1

d A(hp))−1
(7)

where R � E{YYT } is the covariance matrix of the vector-

ized data, R̂ is the sample estimate of R, Rd � R̂ + γI is the
diagonally loaded sample covariance matrix, and γ is the load-
ing factor. It has been shown in [5] that for OSTBCs, the matrix

AT (hp)R−1
d A(hp) in (7) is invertible regardless of the channel

vector value.
Note that the “clairvoyant” linear receiver in (7) assumes that

the true channel vector hp is available. In practice, such an as-
sumption can hardly be met. Hence, the linear receiver in (7) does
not correspond to any practical scenario and can only be used for
comparison purposes. In practice, one has to estimate hp and to
use this estimate in (7).

3. MULTIUSER CHANNEL ESTIMATION

3.1. Standard LS-Based Technique

To recover the user transmitted symbols, one needs to estimate

the user channel vectors {hp}P
p=1. A straightforward approach

to estimate these vectors is to employ training and to use the LS

approach to obtain {hp}P
p=1. To show this, let us rewrite (2) as

Y =
P∑

p=1

Ã(sp)hp + V (8)

where Ã(sp) is a 2MT×2MN matrix whose kth column is given

by [Ã(sp)]k = A(ek)sp . As before, ek is the vector having one

in its kth position and zeros elsewhere but now its dimension is
2MN × 1. Assuming that each user transmits Jt training blocks
and using the data model in (8), we can write

y(n) � Y(n) =
P∑

p=1

Ã(sp(n))hp +V(n), n = 1, . . . , Jt (9)

where sp(n) is the nth known vector transmitted by the pth user,
and Y(n) and V(n) are, respectively, the received signal matrix
and the noise matrix.

Using the notations g � [hT
1 hT

2 . . . hT
p ]T and A(n) �

[Ã(s1(n)) Ã(s2(n)) · · · Ã(sP (n))], we can rewrite (9) as

y(n) = A(n)g + V(n), n = 1, . . . , Jt . (10)

Using (10), the LS estimate of the vector g is given by

ĝ = (AH
A)−1

A
Hz (11)

where z � [yT (1) · · ·yT (Jt)]
T and A � [A(1)T · · ·A(Jt)

T ]T .
It is noteworthy that, according to (11), one has to ensure that

the matrix A is full column rank. Since the dimension of A is
2MTJt × 2PMN , the full column rank condition of A implies
that Jt ≥ PN/T has to be chosen.

3.2. Capon-Based Technique

In application to our problem, the Capon linear receiver can be in-
terpreted as a sort of spatio-temporal filter which passes the signal
of a hypothetical user with the channel vector h without any dis-
tortion while maximally rejecting the signals of other users. More
specifically, to linearly estimate the kth entry of some 2K × 1
real vector s (which belongs to a hypothetical transmitter with a
channel vector h), one can obtain the coefficient vector wk of the
corresponding linear Capon receiver by solving the following op-
timization problem [3], [5]:

min
wk

wT
k Rwk subject to wT

k ak(h) = 1 . (12)

The solution to (12) is well known to be

wk(h) = (aT
k (h)R−1ak(h))−1 R−1ak(h) . (13)

Note that, according to (13), a separate weight vector has to be
obtained for each k = 1, . . . , 2K (i.e., 2K linear receivers have to
be designed to estimate all entries of s).

For any channel vector h and the kth entry of s, we can de-
fine the Capon “spectrum” through the output of the corresponding
Capon receiver as

P k
C(h) � wT

k (h)Rwk(h) = (aT
k (h)R−1ak(h))−1 . (14)

Since we defined the Capon spectrum in (14) as the output power
of the kth linear receiver, it is expected to have maxima for h =
hp/‖hp‖ for all p = 1, . . . P . Therefore, our goal will be to find
the values of h which maximize the Capon function in (14). How-
ever, as ak(h) is linear in h, the value of Capon spectrum can
increase arbitrarily when h → 0. To avoid such a trivial solu-
tion, we assume that ‖h‖ = 1. Although any of the Capon spectra

{P k
C(h)}2K

k=1 can be used to estimate the channel vectors, we com-
bine all of them as

QC(h) �
2K∑
k=1

(P k
C(h))−1 = hT

( 2K∑
k=1

ΦT
k R−1Φk

)
h (15)

where QC(h) can be viewed as null-spectrum.
The definition of QC(h) in (15) allows us to find the chan-

nel estimates in a closed form. To show this, we note that if all
Capon spectra {P k

C(h)}2K
k=1 have a maximum for h = hp/‖hp‖,

then QC(h) will have a minimum for h = hp/‖hp‖. Hence,
we propose to estimate the normalized user channel vectors as
the P values of h which minimize QC(h). Therefore, exploit-

ing the fact that the channel vectors {hp}P
p=1 are linearly indepen-

dent, the true channel vectors {hp}P
p=1 are expected to belong to

the subspace spanned by the P minor eigenvectors of the matrix

Ψ �
∑2K

k=1 ΦT
k R−1Φk. Denoting the P minor eigenvectors of

this matrix as uk (k = 1, . . . , P ), we have

hp =

P∑
k=1

αpkuk . (16)

Note that to find the vectors {uk}P
k=1, only the knowledge of the

data covariance matrix R is required. This matrix can be esti-
mated without any training data. However, to determine the real
coefficients αpk, a few training data blocks have to be used. In the
sequel, we show how these coefficients can be obtained based on
the LS approach.
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Suppose that each transmitter sends a total number of J blocks
to the receiver and assume that, out of these J blocks, the first
Jt training blocks are known at the receiver while the remaining
J − Jt blocks are used to convey the information symbols. One
can then use all J blocks to obtain the sample estimate of R as

R̂ = 1
J

∑J
n=1 y(n)yT (n). Replacing R with R̂, we can estimate

the vectors {uk}P
k=1 as the P minor eigenvectors {ûk}P

k=1 of the

matrix Ψ̂ �
∑2K

k=1 ΦT
k R̂−1Φk . Then, using (16), we have

A(ĥp) =
P∑

p=1

αpkA(ûk) (17)

which follows from the linearity of A(·) in its argument. Replac-

ing A(hp) in (9) with A(ĥp) of (17), we can write (9) as

y(n) =

P∑
k=1

Bk(n)αk + V(n) = B(n)α + V(n) (18)

where Bk(n) � [A(ûk)s1(n) A(ûk)s2(n) · · · A(ûk)sP (n)],

B(n) � [B1(n) · · · BP (n)], B � [BT (1) · · · BT (Jt)]
T ,

αkq � [α1,k · · · αP,k]T , and α � [αT
1 · · · αT

P ]T . Using
these notations and employing (18), the LS estimate of α can be
written as

α̂ = (BH
B)−1

B
Hz . (19)

Once the estimate of α is found, one can obtain the channel esti-
mate of the pth user by means of (16).

To guarantee the uniqueness of the LS solution for α, the

2MTJt × P 2 matrix B has to be full column rank, i.e. Jt ≥
P 2/(2MT ) has to be chosen.

3.3. MUSIC-Based Technique

Let us define the signal subspace as that spanned by the columns of

the matrices {A(hp)}P
p=1 and the noise subspace as that orthog-

onal to the signal subspace. Note that the dimension of the signal
subspace is, at most, 2KP and the dimension of the noise sub-
space is, at least, 2MT − 2KP . To ensure that the noise subspace
is non-degenerate, we require the number of the transmitters P to
be smaller than �MT/K� where �r� denotes the largest integer
smaller or equal to r.

Denoting the dimension of the signal subspace as d (d ≤
2KP ), it can be easily proven that the signal subspace is spanned
by the d principal eigenvectors of the data covariance matrix R
and the rest 2MT − d eigenvectors of this matrix span the noise
subspace. Based on this fact, we can write

AT (hp)E = 0 for p = 1, . . . , P (20)

where E is a is a 2MT × (2MT − 2KP ) matrix whose columns
are the eigenvectors of the data covariance matrix R corresponding
to the 2MT − 2KP smallest eigenvalues.

In practice, E can be estimated through the eigendecomposi-

tion of the sample covariance matrix R̂. Having such an estimate

Ê of E, let us define the generalized MUSIC “spectrum” as

PMUSIC(h) = 1/‖AT (h)Ê‖2
F (21)

where ‖ · ‖F denotes the Frobenius norm. To avoid the trivial zero
solution, we assume that ‖h‖ = 1. Doing so, the user normalized
channel vector estimates are given as the values of h for which
PMUSIC(h) has its P most prominent peaks.

Note that the MUSIC spectrum defined in (21) can be further
simplified as

PMUSIC(h)� 1

tr{AT(h)ÊÊTA(h)} =
1

hTΦT (I2K⊗ÊÊT )Φh

where tr{·} denotes the trace operator, ⊗ stands for the Kronecker
product, and (6) has been used to obtain the last line of (22).
From (22), we see that the channel vector estimates belong to

the subspace spanned by the P eigenvectors of the matrix Γ �
ΦT (I2K ⊗ ÊÊT )Φ that correspond to the P smallest eigenval-
ues. Denoting the P minor eigenvectors of the matrix Γ as vk

(k = 1, . . . , P ), one can write

ĥp =

P∑
k=1

βpkvk . (22)

Using the training procedure similar to that developed in the pre-
vious subsection for the Capon-based channel estimator, the coef-
ficients βpk (k, p = 1, . . . , P ) can be estimated as

β̂ = (FH
F)−1

F
Hz (23)

where β � [βT
1 βT

2 · · · βT
P ]T , βk � [β1,k β2,k · · · βP,k]T ,

F � [FT (1) · · · FT (Jt)]
T , F(n) � [F1(n) · · · FP (n)], and

Fk(n) � [A(vk)s1(n) · · · A(vk)sP (n)].

Once β is estimated by means of (23), the channel vector es-
timate of the pth user can be found from (22) by using the proper

elements of β̂ in this equation.
In order to have a unique LS estimate for the vector β, the

2MTJt × P 2 matrix F has to be full column rank, and hence,
Jt ≥ P 2/(2MT ) has to be chosen. Therefore, the minimal value
of Jt for the MUSIC-based estimator is the same as for the Capon-
based estimator.

It should be noted that the proposed Capon and MUSIC-based
techniques can exploit all received data blocks to estimate the basis

for the subspace spanned by the channel vectors {hp}P
p=1. This

is a parsimonious approach, because after obtaining such a basis,
one needs to determine only the coefficient vectors α or β rather

than all the channel vectors {hp}P
p=1. Such a reduction in the

number of parameters allows us to reduce the number of training

blocks compared to the case where the channel vectors {hp}P
p=1

are estimated directly. Indeed, for the Capon and MUSIC-based

techniques, the minimum value for Jt is P 2/(2MT ) while for the
standard LS approach the minimal value of Jt is PN/T . Hence,
if P < 2MN , then the minimum number of training blocks in our
Capon and MUSIC-based channel estimators is 2NM/P times
smaller than when the standard LS channel estimator is used. That
is why we call our techniques semi-blind.

Note that in application to array processing, due to uncertain-
ties in the array manifold (such as calibration errors, distorted ar-
ray shape, propagation mismatches, etc.), the MUSIC technique
may break down. However, in application to the MIMO multi-
user channel estimation, the MUSIC method does not suffer from

such uncertainties because for any value of h̃, the matrix A(h̃) is
exactly determined by the underlying OSTBC.

4. SIMULATIONS

Throughout our simulations, the signal-to-noise ratio (SNR) for

the pth user is defined as σ2
p/σ2 where σ2

p is the variance of each

complex entry of Hp and σ2 is the noise power. In each run, the

entries of the channel matrices {Hp}P
p=1 are generated as complex

zero-mean i.i.d. Gaussian random variables, i.e., Rayleigh fading
is considered. The 3/4 rate (K = 3, T = 4) amicable design-
based OSTBC of [7] is used by the transmitters as the underly-
ing OSTBC to encode the information symbols. All the results
are averaged over 100 simulation runs. In all our examples, only
Jt = 5 training blocks are used and the sample covariance matrix
is computed using J = 300 blocks. The diagonal loading factor

γ = 10σ2 is assumed.
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Fig. 1. Normalized channel estimation error versus the SNR for

the weaker (top) and stronger (bottom) transmitter. First example.

−10 −5 0 5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (DB)

S
E

R

LS-BASED ESTIMATES USED IN MV LINEAR RECEIVER (7)

CAPON-BASED ESTIMATES USED IN MV LINEAR RECEIVER (7)

MUSIC-BASED ESTIMATES USED IN MV LINEAR RECEIVER (7)

CLAIRVOYANT MV LINEAR RECEIVER (7)

Fig. 2. SER versus SNR for the weaker transmitter. First example.

In the first example, we consider P = 2 transmitters with
N = 4 and a receiver with M = 4 antennas. We assume that the
SNR of one of the users is 2.5 dB smaller than that of the other
user. In this example, we compare the performance of three differ-
ent multiuser MIMO channel estimation techniques: the standard
LS approach, the Capon-based technique, and the MUSIC-based
method. Figure 1 shows the normalized channel estimation error
for different techniques and for both transmitters. As can be seen
from this figure, the Capon and MUSIC-based techniques greatly
outperform the standard LS-based method. It is also noteworthy
that the MUSIC-based approach performs slightly better than the
Capon-based algorithm. Figure 2 shows the symbol error rates
(SERs) versus the SNR for the MV linear receiver (7) when it uses
channel estimates obtained by different methods for both trans-
mitters. In this figure, the SERs for the clairvoyant MV linear
receiver are also shown. Note that the latter receiver does not cor-
respond to any practical application and is used for comparison
purposes only. As can be seen from Figure 2, the performance
of the MUSIC-based MV linear receiver is very close to that of
the clairvoyant MV linear receiver, while the Capon-based MV re-
ceiver has slightly worse performance. The LS-based MV receiver
has the worst performance among the methods tested.

In the second example, we consider P = 8 transmitters with
N = 4 and a receiver with M = 8 antennas. Note that in this
example, Jt = 5 training blocks are not sufficient for the standard
LS-based technique which cannot be used in this case.

Figure 3 shows the SERs versus the SNR for the weaker trans-
mitter. In this figure, we compare the clairvoyant MV linear re-
ceiver with the MV receivers in (7) that use the Capon and MUSIC-
based channel estimates. As can be seen from this figure, the
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Fig. 3. The SER versus the SNR for the weaker transmitter. Sec-

ond example.

MUSIC-based multiuser MIMO channel estimation method per-
forms better than the Capon-based technique. For high values of
SNR, the MUSIC-based technique has its SER quite close to that
of the clairvoyant MV linear receiver.

5. CONCLUSIONS

In this paper, we proposed two novel semi-blind techniques for
multiuser MIMO channel estimation that are applicable to the case
when OSTBCs are used for data transmission. Our approach is
based on the extension of the concepts of the Capon and MU-
SIC methods to the problem of multiuser MIMO channel estima-
tion. Compared to the standard LS-based channel estimation ap-
proach, the proposed techniques provide an improved bandwidth
efficiency and also improve the channel estimation accuracy at the
expense of only moderate increase in complexity.
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