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ABSTRACT
There is a need to broadcast identical information to mul-
tiple users in a network. Examples include sending a bea-
con signal from an UAV to multiple sensors in a surveil-
lance region and, in the context of ad hoc networks, mul-
ticasting. This paper studies the information theoretic as-
pects of multiple-input multiple-output (MIMO) beaconing
where multiple antenna elements are available at the trans-
mitter. A MAXMIN formulation is proposed to exploit the
channel state information assumed to be available at the
transmitter. A solution which applies linear programming
is presented, along with numerical examples demonstrat-
ing the performance gain over the channel blind transmssion
scheme.

1. INTRODUCTION

One of the challenges in sensor networks is the so-called
reachback problem where multiple distributed sensor nodes
need to send their preprocessed data to a remote collector,
such as an UAV (Unmanned Aerial Vehicle) flying over a
surveillance region. The power and range constraints at the
sensor nodes, the lack of a robust synchronization mecha-
nism due to the distributed nature, and the sheer data vol-
umn make this a unique challenge. Numerous studies are
under way that investigate the distributed data compression,
distributed space-time codes, and other related problems.

Not much attention has been given to the reverse ‘reach-
back’ (broadcast) problem in which the UAV serves as a
transmitter while distributed sensor nodes serve as multiple
receivers. While technically less difficult than the reachback
problem because of the typically generous resource supply
at the transmitter (UAV), achieving real time data distribu-
tion is still a challenge due to the short fly-over time and
the dispersiveness of the receivers and their diverse channel
conditions. Furthermore, an efficient solution to the broad-
casting problem will facilitate the solving of the reachback
problem. For example, much of the existing work in the
reachback problem often involves sending a beacon signal
from the UAV to the sensor nodes. Whether beaconing can
be done in real-time or not largely determines the validity
of many of the proposed solutions.

�This work was supported by the AFRL/IF through the 2004 summer
visiting faculty research program.

The reverse ‘reachback’ problem amounts to a simple
broadcast channel: a single transmitter sends information
to multiple receivers. The problem addressed here, how-
ever, differs from that typically associated with the classical
broadcast channel [1]: instead of sending independent sig-
nals to different users, we assume that identical information
is sent to all the receivers. Examples also include, in the
context of a cellular system, the broadcasting of a common
message (e.g., synchronization packet) from a basestation
to all the mobile nodes, as well as the multicasting problem
in ad hoc networks. We use ‘beaconing’ for the problem
of sending identical information in a broadcast channel to
distinguish from that of sending independent information.
The criterion we use is to minimize the total communica-
tion time to successfully transmit the beacon signal to all the
users. For simplicity and considering practical constraint,
we prohibit local communications among sensors thus each
sensor needs to independently decode the received signal.

If only a single antenna is used at the transmitter, the so-
lution to the beaconing problem is obvious: the transmitter
simply transmits at the rate equal to capacity correspond-
ing to the worst user, defined as the one with the smallest
signal to noise ratio for Gaussian channels. The proof is
trivial: any rate above capacity prohibits reliable reception;
thus to guarantee success for all receivers, transmission rate
needs to be no larger than the capacity of the worst user.
Of interest to this paper is the case when multiple antenna
elements are available at the transmitter while only a sin-
gle antenna is used at the receiver. This model conforms
to practical constraints of a typical MIMO downlink: while
multiple antennas may be available at the basestation (or
the UAV), cost and physical limitations may prohibit hav-
ing multiple antennas installed in multiple receivers (e.g.,
those micro sensors). Notice that this corresponds to the
same MIMO downlink as those studied in [2]. However,
the difference between beaconing and the broadcast prob-
lem makes the solution drastically different: the dirty pa-
per coding scheme [3] that successively encodes user infor-
mation by treating previous users as known interference is
clearly inapplicable when identical information is sent to all
the users.

The rest of the paper is organized as follows. Section
2 gives the problem formulation along with some important
properties associated with it. A solution using linear pro-
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gramming is presented in Section 3. Numerical results are
given in Section 4, followed by conclusions in Section 5.

2. THE MAXMIN PROBLEM

Consider the beaconing problem in the MIMO broadcast
channel where � antennas are used at the transmitter with
a total of � distributed receivers, each employing only a
single antenna. Our goal is to miminize the total commu-
nication time that is needed to successfully send the beacon
signal to all the sensor nodes. Assume frequency flat fading
channels from each transmitter antenna to the � receivers,
the channel from the transmitter to the �th receiver can be
characterized using a �� � vector �� such that

�� � ��� �� ��

where �� is the received signal at the �th receiver, � is the
�� � transmit vector, and �� is a circularly complex Gaus-
sian noise vector with covariance matrix ��� and assumed
to be independent across receivers. As usual, we assume
that � is complex Gaussian (i.e., Gaussian codes) for capac-
ity maximization.

Without the knowledge of channel state information (CSI)
at the transmitter, one can easily establish that the capacity
maximization covariance matrix is a multiple of the iden-
tity matrix (as per power constraint) [4, 5] when identical
information is sent to all the receivers. Our objective is to
investigate alternative transmission schemes when CSI (i.e.,
��’s) is avaialable at the transmitter and the potential perfor-
mance gain over the channel blind transmission approach.
With Gaussian coding and assume �� � �, the mutual in-
formation (MI) between the transmitter and the �th user is

����� � ����
�
� � ��� ���

�

where � is the spatial covariance matrix of the transmit-
ted Gaussian vector. One obvious question is, would any
adaptive schemes achieve better performance (in terms of
minimizing total communication time) than using a fixed�
matrix? An example is to use one� matrix to transmit and
switch to another, say, after a subset of users have success-
fully received the beacon signal. However, optimizing over
all adaptive schemes is generally intractable. It also incurs
significant complexity at the transmitter and is highly sen-
sitive to CSI inaccuracy. In this work we focus only on a
fixed transmission scheme: the transmitter decides on the
� matrix, based on the CSI available, and uses it through
the beaconing process.

For the fixed transmission scheme, the minimum MI
dominates: information can not be reliably received if the
transmission rate is above the MI for any given user. In
other words, for a given �, in order for all the users to re-
liably receive the beacon signal, one can only transmit at a
rate no greater than

�	

�
������� � � � � ������

Thus with a fixed transmission matrix �, the optimal bea-
coning scheme is to solve the following MAXMIN problem

���
�������

�	
������� � � �� � � � ��� (1)

To solve the MAXMIN problem, one needs to search for
a � � � covariance matrix � that maximizes the worst MI
under a given power constraint. We first present a lemma
that may potentially reduce the dimension of the problem.
Define

� � ��� � � � ��� ��

and assume it has a column rank of � . Thus � � �	
��� ��.
One can rewrite� as, for some � �� matrix�,

� � �� (2)

where � is a � � � matrix with � orthonormal columns.
Define, for each �, �� � ����. Then we have

Lemma 1 The MAXMIN problem is equivalent to

���
�������

�	

�
�� � ����

�
� � ���

����

�
� � � �� � � � ��

�

(3)
for some � � � matrix �� that is Hermitian and positive
semi-definitive.

A proof is given in the appendix. Notice that this does not
fundamentally change the MAXMIN problem, but may sig-
nificantly reduce the dimensionality. For example, if a trans-
mitter with 10 antennal elements sends beacons to only two
users, instead of finding a �� � �� covariance matrix, one
can only look for a � � � covariance matrix. Because the
two problems are essentially the same except for the dimen-
sions of a matrix, we will solve the MAXMIN problem in
(1), i.e., using the notations and variables defined therein.

Solving the MAXMIN problem, however, can still be a
formidable task. Any type of exhaustive search is undesired
due to its high computation complexity. In the next, we fur-
ther restrict our solution to a subclass of covariance matrix
that has a very specific structure. In particular, given (2), we
restrict our attention only to matrices of the form

� �

��
���

��	�	
�
� (4)

where 	�� � � � �	� are columns of�. Furthermore, since the
� matrix in (2) is not unique, we consider in particular the
case when� are eigenvectors of the matrix��� that have
non-zero eigenvalues. That is, we want to have the covari-
ance matrix be aligned along the eigenvectors (in terms of
the dyads formed by them). Our motivation is the follow-
ing. If joint processing is allowed at the receivers (which
converts the broadcast channel into a single MIMO chan-
nel), the optimal � is obtained through water filling along
the eigenmode which has precisely the form of (4). For
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the MAXMIN problem with distributed receivers, however,
such� does not guarantee optimality. Examples can be eas-
ily found (one of them is supplied in Section 4). Nonethe-
less, allowing for this special form provides reasonably good
performance compared with the optimal solutions for cases
where the optimal solutions can be easily found. Perhaps
more importantly, this special structure admits a very simple
solution using linear programming while still provides sig-
nificant performance gain over the channel blind approach.
Before presenting the solution in the next section, we first
show that, for a special class of channels, restricting the
MAXMIN solution to the form in (4) does not lose any op-
timality.

Theorem 1 If ��� � � � ��� are orthogonal to each other, then
the solution to (1) among all � in a form of (4) is globally
optimal.

Intuitively, with orthogonal channel vectors, the optimal in-
put covariance reverse water filling, results in equal rate
among all users. It is then easily established that the pro-
posed MAXMIN solution is equivalent to the equal rate so-
lution with orthogonal channel vectors.

3. SOLUTION

Since ������ � �� is a monotone increasing function of �,
the logarithmic function ������ � ��� ���� in (1) can be
replaced by the quadratic form ��� ���, i.e., we now solve

��	
�������

�
�
�
�� � ��� ���� � � �� � � � ��

�
(5)

From (2), we can write �� � ���, where �� is a � � �
vector. Therefore, the quadratic form in (5) can be written
as

�� � ��� �
�����

Using (4), we can rewrite it as

�� � ��� ��

where  � �����	�� � � � � 	��, i.e., a diagonal matrix. Thus

�� �

��
���

�����
�
	�

Define �� � ��������
�
� �, i.e., its element is the magnitude

square of that of ��. We can further reduce the MAXMIN
problem to

��	
�

�
� ���� �� � � �� � � � ��� (6)


��� ��� � 

� � �

where � is an all one column vector. This problem can now
be reduced to a set of linear programming problems which

can solved efficiently by, for example, the interior point ap-
proach [6]. Assume that the optimizing user index is �, i.e.,
its MI achieves the MAXMIN value, then to find the corre-
sponding � is equivalent to solving

��	 �� � ��� �


��� ��� � �	�
�� � �� for � �� �� and

��� � 

� � �

Thus to find the MAXMIN solution, one simply solves the
above linear programming problem for � � �� � � � �� and
choose the �� that is the largest. Notice that for any given �,
it is possible that the LP program has an empty feasible set
(i.e., the set of constraints defines an empty set). However,
it is trivial to show that at least one user must have a feasible
set that is nonempty. To see this, we simply notice that the
MAXMIN problem in (6) has a nonempty feasible set.

4. NUMERICAL RESULTS

First, we give a simple example to show that the MAXMIN
solution that restricts� to (4) need not necessarily be global
optimum. Consider the case with � � � � � and the fol-
lowing pair of channels

�� �

�
�
�

�
�� �

�
��
�

�

with  � �. It is straightforward to show that the optimal
� is

� �
���

�
�

��� ��

since this � results in the maximum possible MI for user 1
(which equals ����� ���
�
���) while still having �� � ��.
Therefore, we should transmit at the maximum possible rate
for user � which guarantees the mimimum communication
time. Using the MAXMIN approach by restricting� to (4),
we obtain

� �

�
������ ������
������ ������

�

with the corresponding MI equal to ������ ���
�
���. The
reason is that while the obtained � is optimal among the
set of covariance matrices the have the same form as (4), it
consists of only a small fraction of all covariance matrices
satisfying the power constraint – the form (4) onlys consists
of symmetric dyads and all the cross dyads are excluded.
This, however, is still substantially better than the channel-
blind approach that uses ����: its corresponding spectral ef-
ficiency is � ����
���.

Next, we present some numerical examples to demon-
strate the performance advantages of the MAXMIN approach
over the channel-blind approach, i.e., that uses � � �

�
� in-

stead. Rayleigh fading models are used to generate the fad-
ing channels and the obtained MI is an average of ��� in-
dependently generated channels for each SNR value. Fig. 1
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gives a set of comparison corresponding to three different
pairs of (�,�) values. While in all cases the MAXMIN so-
lution exhibits notable improvement over the channel-blind
transmission scheme, we notice that the margin of improve-
ment depends on the parameters. In particular, as the ratio
��� increases, the performance difference also increases.
This is intuitive and can be most easily explained by con-
sidering the two extreme cases. Consider first the case of
� �� �. Since the channels are typically independent
across users, the � channel vectors tend to ‘evenly’ spread
along any eigenmode decomposition. Thus the improve-
ment is less significant (corresponding to the case of � � �
and � � ��). On the other hand, when � �� � (dimen-
sion of the channel vector increases relative to the number
of vectors), the channel vectors typically dwell in a smaller
subspace. Thus the MAXMIN approach that adapt the trans-
mission scheme to the channel vectors has a more signifi-
cant improvement over the channel-blind approach.
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Fig. 1. The achievable MI using the MAXMIN solution and
the channel blind scheme. All users have equal SNR.

5. CONCLUSIONS

Beaconing in MIMO downlink is investigated in this paper.
The potential throughput gain of channel dependent design
over the channel blind approach can be substantial. Thus it
calls for acquiring CSI through, for example, the reciprocity
in time-division duplex systems. The MAXMIN formula-
tion and the corresponding solution provides a way of find-
ing a suboptimal channel adaptive transmission scheme. We
show that if the channel vectors are orthogonal to each other,
then the restricted MAXMIN problem yields the global op-
timal solution. However, in general it need not necessar-
ily give the global optimum. Numerical results show that
the proposed transmission schemes provide significant per-
formance gain in spectral efficiency over the channel blind
approahes.
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A. PROOF OF LEMMA 1

The proof when � � � is trivial: the original MAXMIN
problem is certainly equivalent to itself. Assume � � �.
From (2), we have, for any �,

�� � ���

Assume � � �. Since � consists of orthonormal columns,
we can construct a �� � unitary matrix� � �����. There-
fore, from (2), ��� � �. � being positive semidefinite
and Hermitian, we can find � such that� � ��� . Since
� is a unitary matrix, there exists 	 such that� � �	, i.e.,
any column of � can be written as a linear combination of
columns of�. Rewrite

	 �

�
	�
	�

�

Therefore

� � �	�	
�

�
����	�	

�

�
����	�	

�

�
����	�	

�

�
��

The quadratic form of concern is therefore, using���� �
�,

�� � ��� ��� � ��� �	�	
�

�
����

Thus, by defining 
� � ���� and� � 	�	
�
�

, the MAXMIN
problem can then be reduced to a similar problem with re-
duced dimensionality. Further,

����	 � ����	 � ���	�	
�

�
	

Thus ����	 � 	 , i.e., the same power constraint holds.
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