
TRACKING WITH PARTICLE FILTERING IN TERTIARY WIRELESS SENSOR
NETWORKS

Petar M. Djurić, Mahesh Vemula, and Mónica F. Bugallo

Department of Electrical and Computer Engineering
Stony Brook University

Stony Brook, NY, 11794-2350
djuric, vema, monica@ece.sunysb.edu

ABSTRACT

Recent advances of wireless sensor networks have presented some
very interesting problems for signal processing. For practical rea-
sons, many networks are composed of simple sensors that use very
little power and do not consume much communication bandwidth.
A class of sensors that satisfy these requirements are the tertiary
sensors. They report an approaching event with one signal and a
receding event with another signal. When the event is out of their
range, they do not report anything. In this paper, we apply particle
filtering for processing signals from tertiary sensor networks with
the purpose of tracking events (targets) within the field of the sen-
sor network. We present an algorithm for tracking and demonstrate
its performance by computer simulations.

1. INTRODUCTION

The most recent progress in low-power micro sensors, actuators,
embedded sensors and radios have made wireless sensor networks
one of the most exciting technological developments. The poten-
tial of wireless sensor networks is vast and can include applica-
tions in fields as diverse as environment monitoring (traffic, habi-
tat, security), infrastructure integrity (e.g. power grids), battlefield
tactical applications (target tracking), and medical applications [7].
There is no doubt that they will be deployed with increased success
and their importance for homeland security, health care, manufac-
turing, monitoring of disaster areas, and meteorology may become
unprecedented.

Research on signal processing for wireless sensor networks
has also gained momentum because of the many unique signal
processing challenges posed in the framework of these networks
[7, 8]. One such class of sensor networks is known as tertiary sen-
sor networks. They are designed to minimize the power needed for
operation of the sensors as well as the communication bandwidth
needed for signal transmission.

In brief, tertiary sensor networks are composed of sensors that
emit information based on the strength of the sensed signal in con-
secutive instants and a central unit that collects the information
from all the sensors and fuses it to produce estimates of a moni-
tored event. A tertiary sensor operates as follows [1]: if the sensed
signal is below a preset threshold, the sensor does not report any-
thing (and thereby saves power), if the sensed signal is above the
threshold and has increased in two consecutive time instants, it
transmits a 1, and if it is above the threshold and has decreased in

This work has been supported under Award CCR-0082607.

two consecutive time instants, it transmits a -1. The operation of
such sensor is displayed in Fig. 1. When the sensed target is far
from the sensor, the sensed signal is below the threshold and the
sensor does not send any signals (instants t1 and t2). When the
target enters the range of the sensor and approaches it, the sensor
transmits a 1 (instants t3 and t4), and when it recedes from the
sensor, the sensor transmits a -1 (instant t5). As soon as the sensor
leaves the range of the sensor, again this sensor does not transmit
any signals (instant t6).

t6, st6 = 0

t1, st1 = 0

t2, st2 = 0
t3, st3 = 1

t4, st4 = 1

t5, st5 = −1

Fig. 1. A tertiary sensor with a target passing nearby. The signals
transmitted by the sensors are denoted by stk .

The central unit has considerable computing power and can
run sophisticated algorithms for sequential estimation of the vari-
ous unknowns of an observed event using the received sensor sig-
nals. In this paper, for sequential estimation of the unknowns we
propose a particle filtering algorithm. Particle filtering is a sequen-
tial methodology for estimating unobserved states of an evolving
system by using discrete random measures composed of particles
(samples in the space of unknowns) and their associated weights
[3, 4]. It is well known that particle filtering is particularly useful
in scenarios where the studied system is described by nonlinear
models and where the noise in the system may be non-Gaussian.
This is precisely a setup that arises with tertiary wireless sensor
networks. In this paper we present a particle filtering algorithm
that processes signals from tertiary sensors and tracks a moving
target. We also present simulation results that demonstrate the per-
formance of the proposed particle filter.

2. PROBLEM STATEMENT

The wireless sensor network is composed of deterministically or
randomly deployed sensors whose positions are known to the fu-

IV - 7570-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005

➠ ➡

sion center. The fusion center also knows the model of the target
movement, which is given by [5]

xt = Gxxt−1 + Guut. (1)

Here xt = [x1,t, x2,t, ẋ1,t, ẋ2,t]
� ∈ R

4 is a state vector whose
elements are the position and the velocity of the target in a two-
dimensional Cartesian coordinate system, Gx and Gu are known
matrices defined by

Gx =

⎛
⎜⎝

1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1

⎞
⎟⎠ and Gu =

⎛
⎜⎜⎜⎝

T2
s
2

0

0
T2

s
2

Ts 0
0 Ts

⎞
⎟⎟⎟⎠

where Ts denotes the sampling period, and ut is a 2×1 vector that
represents a Gaussian noise process with zero mean and known
covariance matrix Cu = diag(σ2

u1 , σ2
u2), which accounts for the

acceleration of the target.
The sensors measure the generated signal in log scale and the

model representing the measurement of the n−th sensor, n =
1, . . . , N is

yn,t = gn(xn,t) + vn,t (2)

= Ψ0 − 10 αn log10

(|rn − lt|
d0

)
+ vn,t (3)

where gn(·) is a known function, Ψ0 is the unknown emitted power
of the target measured at a reference distance d0, rn ∈ R

2 is the
position of the n-th sensor, l�t = [x1,t x2,t] denotes the location
of the target at time t, | · | denotes norm (length) of a vector, αn

is a known attenuation parameter which depends on the transmis-
sion medium, and vn,t ∼ N (0, σ2

v) is a noise process, where the
variance σ2

v is assumed known.
The n-th sensor (n = 1, . . . , N) measures the received power

yn,t, processes it locally and generates a signal if yn,t > γ, where
γ is a threshold of the sensor. The signal is generated according to

sn,t =

{
1, if yn,t − yn,t−1 > 0 and yn,t > γ

−1, if yn,t − yn,t−1 < 0 and yn,t > γ
. (4)

If yn,t < γ, the sensor does not emit anything. When |sn,t| = 1,
the central unit receives a signal of the form

zn,t = βnsn,t + εn,t (5)

where εn,t ∼ N (0, σ2
ε), and βn is an attenuation coefficient asso-

ciated with the n−th sensor. Otherwise,

zn,t = εn,t. (6)

We assume that the noise parameters σ2
ε and the coefficients βn

are known.
The main task is the tracking of the evolving state x0:t using

the observations z1:t = [z1,1:t, . . . , zN,1:t]
�.

3. PARTICLE FILTERING

In the past decade, particle filtering has received considerable at-
tention in the engineering literature [2, 3, 4]. Particle filtering is
based on the concept of importance sampling and Bayesian the-
ory. Here we do not provide any review of the methodology, and
instead, we refer the reader to the cited items and the references

therein. In this section we only provide the terminology and the
notation.

The sought information about the unknown state x0:t is com-
pletely captured by the posterior p(x0:t | z1:t). With particle fil-
tering, the posterior, p(x0:t | z1:t), is approximated by a set of par-
ticle streams x

(m)
0:t , m = 1, 2, · · · , M and their weights w

(m)
t . As

soon as a new observation zt+1 is available, the stream of particles
x

(m)
0:t is expanded to x

(m)
0:t+1, m = 1, 2, · · · , M and the weights

are recursively updated to w
(m)
t+1 . The steps of implementing parti-

cle filtering algorithms are known as particle generation (drawing
of x

(m)
t+1 using an importance function and appending it to x

(m)
0:t),

weight computation, and resampling. The last step, resampling,
is needed for avoiding degeneracy of the random measure. With
resampling, streams of particles that have large weights are repli-
cated, and those with negligible weights are removed.

4. TRACKING ALGORITHM

In this section we show the development of a particle filtering al-
gorithm for tracking of one target. First, we form particles of the
form

x̃
(m)
t = [x

(m)
1,t , x

(m)
2,t , ẋ

(m)
1,t , ẋ

(m)
2,t Ψ

(m)
0,t y

(m)
n,t]�

where Ψ
(m)
0,t , although constant, is represented as a time-varying

parameter. In simplifying the implementation of the algorithm, we
use the priors p (x̃t | x̃t−1) as importance functions.

The computation of the weights is then obtained from

w
(m)
t ∝ w

(m)
t−1

N∏
n=1

p (zn,t | x̃(m)
t). (7)

For the factors p(zn,t | x̃(m)
t), we can write

p(zn,t | x̃(m)
t) =

1∑
k=−1

p(zn,t | sn,t = k, x̃
(m)
t)

× P (sn,t = k | x̃(m)
t)

=

1∑
k=−1

p(zn,t | sn,t = k)P (sn,t = k | y
(m)
n,t)

(8)

where
p(zn,t | sn,t = k) = N (βnk, σ2

ε) (9)

and

P
(
sn,t = k | y

(m)
n,t

)
=

{
1, if Ck holds
0, otherwise

(10)

where k = −1, 0, 1, and

C−1 ≡ {yn,t − yn,t−1 ≤ 0 and yn,t > γ} (11)

C0 ≡ {yn,t ≤ γ} (12)

C1 ≡ {yn,t − yn,t−1 > 0 and yn,t > γ}. (13)

It is obvious that the three conditions describe events that are mu-
tually exclusive.

The steps of the particle filtering algorithm can be implemented
as follows:

IV - 758

➡ ➡

1. Initialization:

The particles x̃
(m)
0 , m = 1, 2, · · · , M , are initially drawn

from a prior distribution π(x0), and the weights of the particles
are set to 1

M
.

2. New particle generation:

The first two elements of x̃t are the location of the target in
a two-dimensional space, and the next two elements represent the
velocity in this space. In accordance with the movement model,
we only have to generate the location or velocity components, and
obtain the rest deterministically. For example, first we can gen-
erate the velocity components by p(ẋ1,t, ẋ2,t|ẋ1,t−1, ẋ2,t−1) or
p(ẋ1,t, ẋ2,t|ẋ1,t−1, ẋ2,t−1, zt) and second, compute the locations
from

x
(m)
1,t = x

(m)
1,t−1 +

Ts

2

(
ẋ

(m)
1,t + ẋ

(m)
1,t−1

)
(14)

x
(m)
2,t = x

(m)
2,t−1 +

Ts

2

(
ẋ

(m)
2,t + ẋ

(m)
2,t−1

)
. (15)

For the element Ψ0,t, we employ the following scheme [6].
Let

Ψ0,t = Ψ0,t−1 (16)

and thus the prior proposal density of Ψ0,t should be

p(Ψ0,t | Ψ
(m)
0,t−1) = δ(Ψ0,t − Ψ

(m)
0,t−1) (17)

where δ(·) is the Dirac delta function. At time t − 1, we approxi-
mate p(Ψ0,t−1 | z1:t−1) with a Gaussian density (other densities
may also be used). We then compute the mean and variance of
Ψ0,t−1, from the particles Ψ

(m)
0,t−1, m = 1, 2, · · · , M by

µΨ0,t−1 =
M∑

m=1

w
(m)
t−1Ψ

(m)
0,t−1

σ2
Ψ0,t−1 =

M∑
m=1

w
(m)
t−1

(
Ψ

(m)
0,t−1 − µΨ0,t−1

)2

. (18)

Then we resample from N
(
µΨ0,t−1 , σ2

Ψ0,t−1

)
, i.e.,

Ψ
(m)
0,t−1 ∼ N (µΨ0,t−1 , σ2

Ψ0,t−1). (19)

The drawn Ψ
(m)
0,t−1’s remain unchanged at time instant t, that is,

Ψ
(m)
0,t = Ψ

(m)
0,t−1. (20)

Finally, the elements y
(m)
n,t are easily drawn from

y
(m)
n,t ∼ N (gn(x

(m)
1,t , x

(m)
2,t), σ2

v).

3. Weight computation:

The computation of the weights is carried out recursively by
(8). The factors p(zn,t | x̃

(m)
t) are given by (8)–(13) . When the

weights are normalized, we use them and the particles to find de-
sired estimates of the unknown states. For instance, if the MMSE
estimates are needed, we compute them by

̂̃xt =

M∑
m=1

w
(m)
t x̃

(m)
t . (21)

Before propagating the particles for the next time instant t+1, we
may resample them.

1950 2000 2050 2100 2150 2200 2250 2300 2350
1900

1950

2000

2050

2100

2150

2200

2250

2300

2350

2400
Sensor
Fusion Center

Fig. 2. Layout of the deployed sensor network. The position of the
sensors is indicated by small circles and the sensing boundaries of
the sensors are depicted by larger circles. The fusion center is
represented by an asterisk. The distance units are meters.

5. SIMULATION RESULTS

In this section we present some simulations that illustrate the per-
formance of the proposed algorithm for target tracking. In the sim-
ulations we considered a sensor network with sensors uniformly
placed on a grid. Other possible sensor placements may include
random and other deterministic constellations. The deployed sen-
sors had a sensing radius of 50m. The ability of the sensor to de-
tect the presence of targets depended on the received power and the
sensing radius. If the sensed signals were above a preset thresh-
old, the sensors reported to the fusion center (placed in the middle
of the field) with a signal according to (4). The sensor network is
shown in Fig. 2.

The state vector particles involving the kinematic parameters
of the target were initially drawn from a Gaussian distribution
function with a known mean x̄0 and covariance matrix Ξ

x̄0 =

⎡
⎢⎣
2000
2000

5
5

⎤
⎥⎦ and Ξ =

⎡
⎢⎣

50 0 0 0
0 50 0 0
0 0 5 0
0 0 0 5

⎤
⎥⎦ (22)

while Ψ
(m)
0 was generated from a uniform distributionU(Ψa, Ψb),

with Ψa = −80 and Ψb = 0.
The simulation parameters were set as follows: the state co-

variance matrix Cu = diag(0.5, 0.5), the variance of the noise pro-
cess vn,t was σ2

v = 1, the sampling period Ts = 1, and the atten-
uation parameter α = 2.3, which was the same for all the sensors.
Recall that the fusion center receives a highly attenuated infor-
mation signal from the sensors. The probability of false alarm in
detecting a signal from the sensor was PFA = 0.015. In the imple-
mentation of the particle filtering algorithm, M = 2000 particles
were used and resampling was performed at every step. Since at a
particular instant of time only very few sensors, which are in the
vicinity of the target, contain meaningful information about the
target, only a subset of the sensors were used in calculating the
likelihoods.

In Figs. 3 and 4 we show the root mean square errors of the es-
timated kinematic and power parameters of the target. The errors
were computed over 500 runs with 100 different target trajecto-
ries drawn from the same distribution p(x0:t). It can be seen that
a mean square error of about 8.5m in the target’s position is at-
tained using this algorithm. A target trajectory and its estimates

IV - 759

➡ ➡

0 10 20 30
0

1

2

3

4

5

6

7

Time

√M
S

E
 o

f x
1,

t

0 10 20 30
0

1

2

3

4

5

6

7

Time

√M
S

E
 o

f x
2,

t

0 10 20 30
0

0.5

1

1.5

Time

√M
S

E
 o

f x
1,

t

0 10 20 30
0

0.5

1

1.5

Time

√M
S

E
 o

f x
2,

t

All Sensors
6 sensors

All Sensors
6 sensors

All Sensors
6 sensors

All Sensors
6 sensors

. .

Fig. 3. Root mean square errors of the kinematic parameters.

0 5 10 15 20 25 30
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
All Sensors
6 sensors

Fig. 4. Root mean square error of Ψ0.

1950 2000 2050 2100 2150 2200 2250 2300
1950

2000

2050

2100

2150

2200

2250

2300

2350
True Trajectory
Estimated Trajectory
Sensor

Fig. 5. A single run of a system trajectory estimation.

are shown in Fig. 5. As can be seen in Figs. 3 and 4, the mean
square error performance is almost the same when one considers
6 sensors around the vicinity of the target and all the sensors in
the network. This suggests that a reduction of computational com-
plexity of the algorithm by several orders of magnitude is possi-
ble. Fig. 6(a) shows the evolution of Ψ0 with time, where the
true value of Ψ0 is represented with a dotted line. The other three
subplots show the posterior density of Ψ0 which is approximated
by a Gaussian kernel. It can be seen that the conventional particle

0 10 20 30
−44.5

−44

−43.5

−43

−42.5

Time

T
ru

e
V

al
ue

 a
nd

 E
st

im
at

e
of

 P
o

−45 −44 −43 −42
0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
t t

im
e

t=
10

−44 −43.5 −43 −42.5 −42
0

0.5

1

1.5

2

A
t t

im
e

t=
20

−43.5 −43 −42.5 −42
0

0.5

1

1.5

2

2.5

3

3.5

A
t t

im
e

t=
30

(a) (b)

(c) (d)

Fig. 6. (a) Evolution of Ψ0 with time. (b,c,d) represent the poste-
rior densities of Ψ0 at t=10,20,30s

filtering algorithm provides good tracking results.

6. CONCLUSIONS

In this paper we presented a particle filtering algorithm for a ter-
tiary wireless sensor network for tracking a moving target in a two-
dimensional plane. Even though the sensors provide highly com-
pressed information about the moving target, the central unit of
the sensor network was capable of estimating the targets trajectory
and its velocity with good accuracy.

7. REFERENCES

[1] J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko, and
D. Rus, “Tracking a moving object with a binary sensor net-
work,” in the Proceedings of the First International Confer-
ence on Embedded Networked Sensor Systems, Los Angeles,
CA, 2003, pp. 150–161.

[2] P. M. Djurić and S. J. Godsill, Eds., Special Issue on Monte
Carlo Methods for Statistical Signal Processing, vol. 50, IEEE
Transactions on Signal Processing, 2002.

[3] P. M. Djurić, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai,
M. F. Bugallo, and J. Mı́guez, “Particle filtering,” IEEE Signal
Processing Magazine, vol. 20, no. 5, pp. 19–38, 2003.

[4] A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequential
Monte Carlo Methods in Practice, Springer, New York, 2001.

[5] F. Gustaffson, F. Gunnarsson, N. Bergman, U. Forssel, J. Jans-
son, R. Karlsson, and P.-J. Nordlund, “Particle filtering for
positioning, navigation, and tracking,” IEEE Transactions on
Signal Processing, vol. 50, no. 2, pp. 425–437, 2002.

[6] J. Kotecha and P. M. Djurić, “Gaussian particle filtering,”
IEEE Transactions on Signal Processing, vol. 51, no. 10, pp.
2592–2601, 2003.

[7] Z. Kumar, F. Zhao, and D. Shepherd, Eds., Collaborative
Information Processing, IEEE Signal Processing Magazine,
March 2002.

[8] K. Yao, D. Estrin, and Y. H. Hu, Eds., Special Issue on Sensor
Networks, EURASIP Journal on Applied Signal Processing,
vol. 2003, 2003.

IV - 760

➡ ➠

