
OUTLIER COMPENSATION IN SENSOR NETWORK SELF-LOCALIZATION VIA THE EM
ALGORITHM

Joshua N. Ash, Randolph L. Moses

Ohio State University
Department of Electrical and Computer Engineering

Columbus, Ohio 43210

ABSTRACT

Self-localization is an important component of distributed
sensor systems. The presence of a few highly erroneous
measurements, or outliers, results in erroneous sensor loca-
tion estimates. In this paper we employ the EM algorithm
to iteratively detect outlier measurements and provide ro-
bust position estimates of the sensors. The derivation of the
algorithm is given, and Monte-Carlo simulations are pre-
sented to compare this estimator to others. The performance
of the EM-based algorithm is also shown to be close to the
Cramér-Rao lower bound for position estimation when per-
fect knowledge of the outlier process is known.

1. INTRODUCTION

Self-localization of individual sensor positions is an essen-
tial prerequisite for the utility of most sensor networks. Lo-
calization estimates are usually obtained by processing of
time-of-arrival (TOA), angle-of-arrival (AOA), or received
signal strength (RSS) measurements between nodes.

In practice, measurements used for self-localization of-
ten contain outliers with large errors – frequently due to low
SNR conditions [1] or multipath components of the cali-
bration signal. Most self-localization algorithms do not ac-
count for outliers and therefore produce highly erroneous
localization solutions when outliers are present. In this pa-
per we develop and evaluate a robust self-localization algo-
rithm that effectively mitigates the effects of outlier mea-
surements.

Previous work by Ward et al. [2] removed outliers by
eliminating measurements with the largest studentized resid-
uals until a minimum threshold variance was reached. Sa-
varese et al. [3] suggest a refinement phase to initial local-
ization estimates which establishes a confidence weight that
effectively removes inconsistent measurements.
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If a more complete statistical characterization than a point
estimate is desired, nonparametric belief propagation (NBP)
may be used to provide posterior probability density esti-
mates of the sensor locations [4]. Outliers are inherently
handled by including a high variance component capable of
representing an erroneous measurement.

In this paper we pose the self-localization task as a sta-
tistical estimation problem that includes an outlier measure-
ment model. We employ the EM algorithm [5] to jointly
determine outlying measurements and estimate sensor posi-
tions. Our presentation takes a centralized approach; how-
ever the EM algorithm may be implemented in a distributed
fashion as described in [6]. Additionally, although we only
consider TOA measurements, the results are easily extended
to AOA and RSS observations.

2. PROBLEM FORMULATION AND EM
ALGORITHM

Consider N sensors with unknown locations randomly dis-
tributed in a planar region. In turn, each sensor emits a sig-
nal which is detected by a subset of the other sensors. Sen-
sors that detect this signal process the received waveform
to obtain an estimate of the time of arrival of that signal.
Let the arrival time at sensor i of an emission from sen-
sor j be denoted tij . Under normal (non-outlier) conditions
tij ∼ f1(tij ;θ), which is assumed to happen with probabil-
ity µ. With probability 1−µ we have tij ∼ f2(tij ;θ), where
the outlier distribution f2(tij ;θ) typically has a much larger
variance than the typical distribution f1(tij ;θ). Here, θ =
[{xi, yi, τi}N

i=1] is the unknown parameter vector to be esti-
mated, where xi, yi, τi are the x-coordinate, y-coordinate,
and emission time of node i respectively. The unknown
emission times are nuisance parameters in this problem.

For convenience, we define the indicator random vari-
able Iij to indicate whether measurement tij is selected
from the typical or outlier pdf:

f(tij ;θ|Iij = 1) = f1(tij ;θ)
f(tij ;θ|Iij = 0) = f2(tij ;θ), (1)
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where p(Iij = 1) = µ and p(Iij = 0) = (1 − µ).
For a given measurement, we define the complete data

in the EM context to be {tij , Iij}, which has distribution

f(tij , Iij ;θ) = f(tij ;θ|Iij)p(Iij). (2)

The incomplete data is the observation {tij}. The TOA
measurements are collected into the matrix T = {tij}, and
the indicator variables are similarly collected into I = {Iij}.

Let the set S be composed of node pairs for which TOA
measurements are observed; that is, (i, j) ∈ S if j’s emis-
sion is heard by i. Then, the full pdf of the complete data
is

f(T , I;θ) =
∏

(i,j)∈S
f(tij ;θ|Iij)p(Iij). (3)

It is desirable to treat I as an additional parameter and
maximize (3) jointly over I and θ. However, the large
size and discrete nature of I makes this impractical even
for small networks. Therefore, we choose to maximize the
marginal f(T ;θ) which is accomplished with the EM al-
gorithm by treating the elements of I as missing measure-
ments. The EM algorithm proceeds as follows.

With θ̂(n) denoting the current estimate of θ, the expec-
tation step of EM is to compute

U(θ, θ̂(n)) = E
[
ln f(T , I;θ)|T ; θ̂(n)

]
= E

[∑
(i,j)∈S ln f(tij ;θ|Iij)

+ ln p(Iij)|T ; θ̂(n)
]
.

(4)

Taking the expectation we obtain

U(θ, θ̂(n)) =∑
(i,j)∈S

[
ln f(tij ;θ|Iij = 1)p(Iij = 1|T ; θ̂(n))

+ ln f(tij ;θ|Iij = 0)p(Iij = 0|T ; θ̂(n))

+ ln p(Iij = 1)p(Iij = 1|T ; θ̂(n))

+ ln p(Iij = 0)p(Iij = 0|T ; θ̂(n))
]
. (5)

Let Ī
(n)
ij be the expected value of Iij at the nth step, Ī

(n)
ij =

p(Iij = 1|tij ; θ̂(n)). From Bayes rule we have

Ī
(n)
ij =

µf1(tij ; θ̂(n))

µf1(tij ; θ̂(n)) + (1 − µ)f2(tij ; θ̂(n))
. (6)

Because U(θ, θ̂(n)) is to be maximized with respect to θ,
we can eliminate the last two terms in (5) which are inde-
pendent of θ. The resulting function, after substituting (1)
and (6) is

Ũ(θ, θ̂(n)) =
∑

(i,j)∈S
[

ln f1(tij ;θ)Ī(n)
ij

+ ln f2(tij ;θ)(1 − Ī
(n)
ij )

]
(7)

The resulting EM algorithm is, for n = 0, 1, 2, . . .
E-step: Compute

Ī
(n)
ij ∀ (i, j) ∈ S from (6) (8)

M-step: Find θ̂(n+1) as

arg max
θ

Ũ(θ, θ̂(n)). (9)

3. EXAMPLE AND DISCUSSION

As an example, we consider f1(tij ;θ) and f2(tij ;θ) to be
Gaussian distributions with means equal to the true arrival
time

ηij =
√

(xi − xj)2 + (yi − yj)2/c + τj , (10)

and standard deviations σ1 = 1 ms and σ2 = 30 ms re-
spectively. We take the propagating signals to be acoustic
with propagation velocity c = 340 m/s. The standard rang-
ing error corresponding to the above timing standard errors
is 0.34 m for typical measurements and 10.2 m for outlier
measurements.

Figure 1 illustrates the sample network considered, with
solid links denoting quality measurements and dashed links
denoting outlier measurements. The four corner nodes are
designated as anchor nodes having known locations. The
reception range is limited to 90 m, so that not all sensors
make measurements of each others’ emitted signal. In this
example, the number of measurements made is |S| = 162,
12 of which are outliers1. The a priori assumption on the
probability of an outlier used in the EM algorithm is 1−µ̂ =
0.05; note that this is mismatched from the actual value of
1 − µ = 0.0741.

Figure 2 illustrates the position estimates from the EM
algorithm corresponding to 200 random realizations of the
arrival time matrix, T . In order to quantify the performance
of the estimates we consider the scene RMS localization er-
ror defined as

erms =

√√√√1/N
N∑

i=1

E[d2
i ], (11)

where di is the distance between the true position of node
i and its estimate. Using the 200 position estimates to em-
pirically approximate each E[d2

i ], we obtain a scene RMS
error of 0.29 m.

For comparison, we consider the error of a “Blind” max-
imum likelihood estimator which uses the same TOA mea-
surements but assumes that none of them are outliers

θ̂blind = arg max
θ

∏
(i,j)∈S

f1(tij ;θ). (12)

1The links are bidirectional and for ease of presentation a dashed line
represents an outlier measurement in both directions.
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Fig. 1: Sample network in a crude grid configuration to be localized. •’s
denote sensors with unknown positions, �’s denote sensors with known
positions. Solid links between sensors indicate quality measurements dis-
tributed via f1(·), and dashed links indicate outlier measurements dis-
tributed via f2(·).
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Fig. 2: Sample localization results for node #7 of Figure 1 for the EM
algorithm (�) and Genie ML (◦) estimators corresponding to σ1 = 1 ms
and σ2 = 30 ms. The 2-sigma and 4-sigma ellipses derived from the
CRLB are also plotted (-). Not shown are three EM estimates, resulting
from poor initialization, which lie significantly outside of the plot range.

We also consider a “Genie” estimator which performs a
maximum likelihood estimate based on knowledge of the
true value of I . Finally, we compare the performance of
these estimators to the Cramér-Rao Lower Bound (CRLB)
for the estimation of θ from the set of TOA observations
and knowledge of the true I (see [7] for the derivation of
the CRLB for this problem). The RMS error for each of the
three estimators, and that derived from the CRLB, is pre-
sented in Table 1. For the EM algorithm, the reported results
correspond to 5 EM iterations, as only negligible improve-
ment was observed for greater numbers. Each estimator was
initialized with the same values resulting from a variant of
multidimensional scaling [8] modified for the TDOA case.

Method RMS error (m)

CRLB 0.18
Genie ML 0.18

EM 0.29
Blind ML 1.39

Table 1: Estimator performance comparison for the network in Figure 1
with σ1 = 1 ms and σ2 = 30 ms.

Since the Genie estimator utilizes knowledge of the true
I and is a maximum likelihood estimator, it is expected to
achieve the CRLB for sufficiently low noise levels (σ1 and
σ2). We observe this behavior from Table 1 where both have
an RMS error of 0.18 m. In Figure 3 we plot the perfor-
mance of the estimators as a function of the standard devia-
tion of the outlier measurements, σ2. Here the efficiency of
the Genie estimator is further confirmed by being indistin-
guishable from the lower bound over the range of σ2.

The Genie estimator is of course not realizable in prac-
tice; however from Table 1 and Figure 3 we see that the EM
algorithm achieves comparable performance over a range of
σ2. For σ2 = 30 ms, the lower bound on RMS error is 0.18
m and the EM estimator achieves an RMS error of 0.29 m,
for a relative efficiency of 1.6. The Blind estimator, which
naively assumes that none of the measurements are outliers,
has an RMS error of 1.39 m. So for this example, the EM
algorithm achieves approximately a 79% reduction in RMS
error over the Blind estimator and is reasonably close to the
CRLB.

A common problem in EM implementations is avoiding
local maxima of the likelihood function. In this case, we
observe our solutions to be somewhat sensitive to the initial
coordinates used, especially for large σ2. If an erroneous
initial coordinate overly favors an outlier measurement, the
outlier will be classified as a good measurement while most
of the remaining measurements get incorrectly character-
ized as being outliers. As such, the maximization phase will
move the coordinate estimate very little and subsequent it-
erations will have negligible effect. We found the output of
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the Blind ML estimator to provide adequate performance as
an initializer to EM and used that for the results presented in
this paper. However, with this initializer the algorithm did
not always converge to the global maximum. For example,
in the σ2 = 30 ms scenario, 8 of the 200 cases converged
to a local maximum. If we ignore these, the error reduces
from 0.29 m to 0.19 m - nearly obtaining the lower bound.
As such, a better initialization routine would improve upon
the results presented here.

Finally we observe that the EM estimator is insensi-
tive to the parameter µ̂ as illustrated by the results in Ta-
ble 2. The actual fraction of quality links in our sample
network was 0.9259, however mismatched values had neg-
ligible effects on performance. We also note that µ̂ can be
adaptively estimated during the E-step of the algorithm as
µ̂(n) =

∑
(i,j)∈S I

(n)
ij /|S|. The performance of this ap-

proach is comparable to the others and is also given in Table
2. µ̂ enters the estimation problem in Equation (6). Because
the typical and outlier distributions have a large difference
in variance, there is frequently a significant difference in the
magnitudes of f1(tij ; θ̂(n)) and f2(tij ; θ̂(n)). This domi-

nates (6) to Ī
(n)
ij ≈ 0 or Ī

(n)
ij ≈ 1, regardless of µ.

µ̂ used in EM alg. RMS error (m)

0.70 0.33
0.9259 0.29
0.95 0.29

adaptive 0.29

Table 2: EM estimator performance comparison for different values of the
parameter µ̂. The actual value of µ was 0.9259 in this example.

4. CONCLUSION

We have applied the EM algorithm to the sensor network
self-localization problem in the presence of outlier measure-
ments. The unobserved measurements of the complete data
set in the EM algorithm were taken as indicator variables
{Iij} denoting whether a particular measurement was an
outlier or not. Through successive refinements on the pos-
terior distribution of {Iij}, the EM algorithm proved suc-
cessful in compensating for outlier measurements. In the
example considered, the localization error was reduced 79%
over a naive maximum likelihood estimator which assumed
high fidelity measurements throughout. Both the Blind and
EM algorithms require the maximization in (9), however the
additional cost of the EM algorithm is that this must be done
for each iteration.
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Fig. 3: Estimator performance as a function of outlier standard deviation,
σ2.
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