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ABSTRACT

Secondary structure prediction is an important step in deter-
mining the structure and function of the proteins. A funda-
mental assumption of the current Bayesian secondary struc-
ture prediction methods is the conditional independence of
residues which occur in distinct segments [1]. This assump-
tion enables the exact calculation of posterior probabilities
by using pre-determined probabilistic models. However,
this assumption is clearly violated in the case of protein
sequences due to the existence of structural motifs which
rely on sequentially distant segments interacting in three-
dimensional space, including β-sheets. It has been sug-
gested that the inability to capture such nonlocal interac-
tions may be the main reason for the low accuracy typically
achieved in β-strand prediction [1], [2]. Furthermore, the
current Bayesian segmentations are based on the maximum
a posteriori or marginal posterior mode searches, which re-
turn a single segmentation that is optimal in some sense. In
this paper, we introduce a new secondary structure predic-
tion method based on a modified version of the well-known
stack decoder. The proposed method is an N-best search al-
gorithm which enables us to use the returned multiple seg-
mentations to improve over a single segmentation. Also due
to the way the segmentations are constructed it is possible
to exploit the non-local interactions between β-strands in
a sub-optimal way with the ultimate goal of increasing the
overall prediction accuracy.

1. INTRODUCTION

A protein is a biomolecule constructed from amino acid
units chosen from a 20 letter alphabet. Protein sequence
analysis is an important area where the goal is to predict the
structure and function of the newly identified proteins. It
has been shown that all the structural information about the
protein is embedded in its amino acid sequence. There are
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several levels at which protein structure prediction can be
performed. In secondary structure prediction, one is mainly
concerned with the assignment of secondary structure ele-
ments to each amino acid residue as shown in Fig. 1. In
tertiary structure estimation (i.e., protein folding), the goal
is to predict the conformation assumed by protein molecule
in 3D space.

The three major secondary structure elements are α-
helix {H}, β-strand {E} and loop {L}. α-helices are strength-
ened by hydrogen bonds between every fourth amino acid
so that the protein backbone adopts a helical configuration.
In β-strands the hydrogen bonding is non-local. They adopt
a parallel or anti-parallel sheet configuration. Other struc-
tural elements such as bends and turns are classified as loops.
Therefore a secondary structure prediction assigns for each
amino acid a structural state from a 3-letter alphabet {H,
E, L}, as depicted in Fig. 1. The secondary structure pre-
diction is an important problem in protein sequence analy-
sis. Accurate predictions provide insights into the molecular
structure and function of a protein.
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Fig. 1. Aminoacid sequence and the corresponding sec-
ondary structure elements.

There are two aspects of secondary structure prediction.
In ab initio or single sequence prediction, the test sequence
does not exhibit significant similarity to any of the training
sequences at the sequence level. This is a limiting factor
for the prediction accuracy. On the other hand, if there are
closely related sequences, this generally implies their struc-
tural similarity, and the predictions are improved by consid-
ering multiple alignments. In this paper, we propose a new
method for the ab initio protein secondary structure predic-
tion. Our approach to the secondary structure prediction
problem is model-based. We formulate secondary structure
prediction in a general Bayesian framework using a semi
markov HMM which was introduced in [3] and briefly sum-
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marized here for the sake of completeness.
A fundamental assumption of the current Bayesian sec-

ondary structure prediction methods is the conditional in-
dependence of residues that occur in distinct segments [1].
This assumption enables the exact calculation of posterior
probabilities through the use of pre-determined probabilis-
tic models. However, this assumption is clearly violated in
the case of protein sequences due to the existence of struc-
tural motifs which rely on sequentially distant segments in-
teracting in three-dimensional space, including β-sheets. It
has been suggested that the inability to capture such nonlo-
cal interactions may be the main reason for the low accuracy
typically achieved in β-strand prediction. Furthermore, the
current Bayesian segmentations are based on the maximum
a posteriori or marginal posterior mode searches, which re-
turn a single segmentation that is optimal in some sense. In
our previous work, we slightly deviated from the indepen-
dence of amino acid residues that are in distinct segments by
incorporating correlations to positions outside the segment
[3]. In this paper, we introduce a new segmentation method
based on a modified version of the well-known stack de-
coder. The proposed method is an N-best search algorithm
which enables us to use the returned multiple segmentations
to improve over a single segmentation. Also due to the way
the segmentations are constructed it is possible to exploit the
non-local interactions between β-strands in a sub-optimal
way with the ultimate goal of increasing the overall predic-
tion accuracy.

2. HMM MODEL

We adopted the semi-Markov HMM introduced in [3]. A
secondary structure of a protein can be defined by a vector
(m;S;T ), where m denotes the total number of segments,
S represents the segment end positions and T represents the
structural state of each segment (α-helix, β-strand or loop).
The state prediction could be re-stated as a posterior maxi-
mization problem. That is, given the observation sequence
of amino acids, denoted by R find the vector (m;S;T )
with maximum posterior probability P (m;S;T |R). Using
Bayes rule, this probability could be expressed as follows:

P (m;S;T |R) =
P (R|m;S;T )P (m;S;T )

P (R)
(1)

where P (R|m;S;T ) denotes the sequence likelihood and
P(m; S ; T ) represents the a priori distribution. Maximizing
the posterior P (m;S;T |R) with respect to the state vari-
ables is equivalent to maximizing the product P (R|m;S;T )
P (m;S;T ). For detailed derivations of P (m;S;T |R),
P (R|m;S;T ), and P (m;S;T ) please refer to [3], and the
references therein. For a detailed review on HMMs, see
[4]. With the formulation presented in [3], we implemented
a semi-Markov HMM. In a typical HMM, there is a finite

number of distinct hidden states. Hidden states in our case
are structural states {H, E, L}. Starting from an initial state,
transitions occur from one state to the other, following a
transition probability distribution. At each state an amino
acid segment is generated according to the length distribu-
tion, and the observation frequency distribution, character-
istic to that state. In our implementation of the semi-Markov
HMM, we modeled amino acids within the segments ac-
cording to the correlation patterns discovered by our statis-
tical analysis. We also deviated from the assumption that
the individual segments are independent by extending the
dependency structure at segment borders and including the
correlations to positions outside the segment.

3. STACK DECODER

Stack decoder, introduced by IBM in the 1970s, is a vari-
ant of the A∗ search [5], a search methodology well-known
in the speech recognition society. We can think of stack
decoder as a sub-optimal tree search with many appealing
properties. The analogy between segmenting a spoken sen-
tence into words and segmenting an amino acid sequence
into secondary structure units suggests that the stack de-
coder can be used in protein secondary structure prediction
with the previously discussed semi-Markov HMM model.
In speech recognition our observation is the output of some
acoustic processor (R), basically a string of symbols and
our target is the most likely word string in all possible word
strings that could have produced the observed speech sig-
nal (W ). In protein secondary structure prediction our ob-
servation is the amino acid sequence (R) and our target is
the most likely secondary structure sequence (W ). In both
cases:

Ŵ = arg max
W

P (R|W )P (W ) (2)

As mentioned early, stack decoder is an efficient heuristic
for tree searches, and it has been used in speech recognition
to find admissible solutions to (2). Although the terms A∗

search and stack decoder are used interchangeably, there is
a crucial difference between these two, which we will ex-
plain when we introduce the original stack decoder algo-
rithm. Before we continue we would like to elaborate on
the use of Viterbi decoder in secondary structure prediction.
After all, Viterbi search is by far the most popular search
method in speech recognition and telecommunications [6].
One of the most appealing properties of the Viterbi search is
its low computational complexity, O(NA2) where N stands
for the sequence length to be decoded and A is the alpha-
bet size (no such polynomial bounds exist for A∗ search).
Furthermore, Viterbi can be made even faster with the help
heuristics like beam search. Unfortunately, Viterbi search
has its own drawbacks which make us question its useful-
ness for the protein secondary structure prediction problem.
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The Viterbi search is optimal in that the back trace of the
highest scoring path obtained by Viterbi search is indeed
one of the highest scoring paths. This optimality is guar-
anteed only if the score of each edge in the path depends
only on that edge (due to the fact that Viterbi search is a
dynamic programming method). In terms of speech recog-
nition, if we were searching through a word trellis, a bigram
language model (score or probability of the current word
depends on the previous word) satisfies this requirement be-
cause each edge identifies the tow words required to com-
pute the bigram score. However, if we were to use trigram
language model (the score or probability of each word de-
pends on the previous two words) we would have to expand
the trellis such that each node represents a two-word context
in order to use Viterbi and still get optimal results. If we
attempt to incorporate longer distance information the num-
ber of nodes required to capture the context will increase
greatly, which will in turn increase the search complexity
greatly, in terms of time and memory. This is the main rea-
son that renders Viterbi search useless, if we are to incor-
porate non-local interactions. Another serious drawback of
Viterbi search is the fact that it yields the best scoring an-
swer and not a list of best scoring answers which is very
desirable in the secondary structure prediction problem. A
list of top-scoring answers, also called as an N-best list, can
be useful if we perform a multi-stage search/segmentation
(as proposed in this paper) where the initial stage returns a
possibly large number of high scoring candidates and the
later stages filters that list with the ultimate goal of obtain-
ing a better result.

The original stack decoder algorithm can be stated as
follows:

1. Initialize the stack with a null theory

2. Pop the best (highest scoring) theory off the stack.

3. Perform fast matches to obtain a short list of candi-
date extensions of the theory.

4. For each extension on the candidate list:

(a) Perform detailed matches (inter and intra-segment),
compute the scores, and determine the highest
scoring extension

i. if (not end-of-sequence) insert into the stack

ii. if (end-of-sequence) insert into stack with
end-of-sentence flag = TRUE.

5. Go to 2.

Here the fast matches in step 3 are computationally inexpen-
sive scoring mechanisms to reduce the number of extensions
to be checked with the more computationally expensive de-
tailed matches. The difference between A∗ search and stark

decoder is the following: In A∗ search, we sort the theo-
ries in decreasing order of scores, but in stack decoder, we
sort the theories first by decreasing order of length, then by
decreasing order of scores. Hence, when we drop a theory
(using the stack decoder), its the shortest theory with that
score.

4. A MODIFIED STACK DECODER

We propose a modified stack decoder which enables us to
obtain suboptimal secondary structure segmentations for a
given amino acid sequence. Each theory of the stack con-
sists of a secondary structure sequence extended up to po-
sition j, where 1 ≤ j ≤ n, and n is the total length of
the amino acid sequence. We first initialize the stack by
including all possible segmentations up to a certain posi-
tion j∗. Then for each theory, we consider candidate ex-
tensions and select a particular extension that maximizes a
certain scoring function. We proceed until the nth position
is reached, where each theory consists of a secondary struc-
ture sequence of length n. Finally, we sort the theories in
decreasing order of scores.

Here an extension is obtained by concatenation of a sec-
ondary structure symbol (either H, E, or L) instead of a sec-
ondary structure segment. This approach allows us to make
fair comparisons between the scores of the individual the-
ories. Another advantage of this method is related to the
selection of the best extension at a given position. In the
case of segment extensions, we are most likely to choose the
segments with minimum lengths because for local exten-
sions, the shorter segments have higher probability scores.
One way to solve this problem would be to design a score
normalization method to compensate for the decrease in the
score of a theory due to its length. Unfortunately, such nor-
malization methods are not easy to find and usually hinge
on some kind of heuristic, which may not perform good for
different protein families. To solve this problem, we are
proposing a method that extends the theories by only a sin-
gle position at each step.

The selection of best scoring extensions from position
j to j + 1 is as follows. We first obtain the list of all
possible candidate extensions derived from the entire set
of theories1. Then we select the particular extension that
generates a maximum scoring segmentation terminating by
an α-helix segment at position j + 1. We similarly se-
lect for termination by a β-strand and a loop segment at
the same position. These three extensions are then car-
ried out in their corresponding theories. After finding the
maximum scoring three extensions, we find the next set of
three extensions with the second maximum scores and re-
peat this until all theories are updated. This approach is

1Maximum length of the list is 3*N , where N is the total number of
theories
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similar to Viterbi algorithm, where for each position we
find three maximum scoring segmentations (corresponding
to three secondary structure states) that terminate at that po-
sition. But in our method, we compute not only the max-
imum scoring segmentations but also the suboptimal ones.
This allows us to obtain alternative sequences, which can be
used to modify the secondary structure prediction result by
fusing information coming from multiple sources.

4.1. How to model non-local interactions due to beta-
strands

After obtaining the suboptimal segmentations it is possi-
ble to update the scores of each segmentation by including
the propensities of amino acid pairs in interacting β-strands
(which can be derived from the PDB). After this, a new sort
can be performed with the updated scores of each segmenta-
tion sequence. We hope that this will improve the prediction
accuracy by reordering the segmentations in such a way that
the ones with non-local interactions, which have been previ-
ously assigned low scores will most likely get higher scores
in the successive sorts.

5. RESULTS

We extracted a representative set of 50 proteins from the
single-sequence set of the EVA server 2 to serve as the test
examples. We used the remaining proteins as the training
set to estimate the parameters of the semi-Markov HMM de-
scribed in [3]. We then computed the Viterbi and the stack
decoder segmentations. The Viterbi implementation is simi-
lar to the one proposed in by Schmidler et al. [1]. The stack
decoder implementation selects the best scoring 100 seg-
mentations with suboptimal scores and applies a probabilis-
tic weighting scheme at each particular position. Here the
segmentation scores3 are chosen as the sequence weights
and the same score is applied to all positions in a secondary
structure sequence. The prediction at a particular position is
computed as the secondary structure type with the highest
sum of scores.

We compared the sensitivity results of the two algo-
rithms. The sensitivity measure used here is the three-state-
per-residue accuracy, (Q3), which is the total number of cor-
rect predictions divided by the total number of amino acids.
For the selected set of proteins, we obtained 3% overall im-
provement in 3-state prediction accuracy (Q3) in compari-
son with the Viterbi algorithm.

2(http://maple.bioc.columbia.edu/eva/doc/ftp.html)
3The score of a segmentation is simply the joint probability of observ-

ing the amino acid sequence and the secondary structure sequence

Q3 Qα Qβ QL

Viterbi 58.64 64.79 35.37 69.15
Stack decoder 61.86 65.42 36.78 73.95

Table 1. Sensitivity Results

6. CONCLUSION AND FUTURE WORK

In this work, we implemented a modified stack decoder as
an alternative method for protein secondary structure pre-
diction. Using this method, it is possible to obtain subop-
timal segmentations of a given amino acid sequence. We
showed that the information in suboptimal predictions is
useful and can improve the results of the Viterbi algorithm.
As a future work, we are going to apply the modified stack
decoder algorithm for detecting the non-local interactions in
β-strands. Typically protein secondary structure prediction
methods suffer from low accuracy in β-strand predictions
where non-local correlations have a significant role. With
the current method, it is possible to update the score of each
segmentation by including the hydrogen bonding propensi-
ties of the amino acid pairs in β-strands. We believe that
this will compensate the inadequate modeling of β-strand
interactions and improve the overall accuracy of the ab ini-
tio predictions.
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