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ABSTRACT

In this paper, we present a maximum likelihood-based error
correction (ML-EC) technique which achieves significant
power savings in digital filtering. Although voltage over-
scaling (VOS) can achieve high energy efficiency, it can
introduce “soft errors” which severely degrade the perfor-
mance of the filter. The proposed scheme detects, estimates
and corrects these soft errors via an ML-based algorithm
that achieves up to 47% power savings without any SNR
loss and up to 60% power savings with a 1.5 dB SNR loss
for an example case study of a frequency-selective low-pass
filter.

1. INTRODUCTION

Due to the growing power demands on portable and wire-
less applications, techniques for reducing power in DSP ap-
plications have gained importance. Numerous techniques
have been proposed to achieve low-power in DSP systems
[1]-[4]. Among them, supply voltage reduction has been
perhaps most widely used due to the quadratic dependency
of supply voltage on power dissipation [1].

Previously, an approach referred to as voltage overscal-
ing (VOS) was proposed to achieve significant power sav-
ings [3, 4]. VOS implies reduction of supply voltage below
the point where the critical path delay begins to exceed the
sampling period, i.e.

Vdd = kvosVdd−crit , 0 < kvos < 1 (1)

where kvos is voltage overscaling factor (VOF) and Vdd−crit

is the voltage at which the critical path delay equals the sam-
pling period. Hence, whenever an input pattern excites a
path which causes larger delay than the sampling period, a
transient error, called a “soft error”, occurs, thereby degrad-
ing the SNR performance in the main DSP (MDSP) block.
Hence, effective soft error mitigation becomes necessary for
successful power savings via VOS.

So far, a number of techniques to mitigate soft error
have been proposed [3, 4]. A prediction-based error control

(PEC) scheme [3] estimates the MDSP output which in this
case is a digital filter by using a forward linear predictor. A
reduced-precision redundancy (RPR) scheme [4] replaces
the potentially corrupted MDSP output with the output of
MDSP replica, when an error is detected.

In this paper, we propose a soft error correction tech-
nique based on a maximum likelihood (ML) principle for
low-power digital filtering. The ML-EC technique is dis-
tinct from previous PEC or RPR schemes, which use the
estimator output to replace the noisy MDSP output when-
ever soft errors occur. The ML-based method estimates
the errors, and removes them from the noisy MDSP out-
put. Consequently, SNR degradation due to VOS can be
restored completely up to certain point of kvos. Even for
a severely scaled VOS conditions, we show that the per-
formance degradation of the ML-based method can remain
small. Simulations suggest that the ML-EC technique out-
performs the conventional PEC [3] and RPR [4] approaches.

The remainder of this paper is organized as follows.
Section 2 describes soft error characteristics and presents
the ML-EC technique. Simulation results are presented in
Section 3.

2. ML-BASED ERROR CORRECTION (ML-EC)
TECHNIQUE
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Fig. 1. Block diagram of the proposed ML-EC technique.
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The ML-EC technique is depicted in Fig. 1. When a
soft error is detected, we estimate the amplitude and sub-
tract the estimate from the noisy MDSP output. In order
to perform this task, we employ an MDSP estimation fil-
ter (MEF) which generates an estimate of the MDSP output
derived from a minimum mean square error (MMSE) cri-
terion. An ML-based error correction can then be applied
after subtracting the MEF output from the noisy MDSP out-
put.

2.1. Soft Error Characteristics

Soft errors occur when the supply voltage is scaled down
beyond the point where the critical path delay exceeds the
sampling period. Since most arithmetic units are based on
LSB-first computation, soft errors tend to appear in the MSBs.
The bits in a multiplier output are divided into two portions :
error-prone bits (EB), or MSBs which are affected by VOS,
and safe bits (SB), or unaffected LSBs. For example, in
Fig. 2, the number of SB and EB are 5 and 3, respectively.
Since the error occurs only in EB, we can deduce that possi-
ble amplitudes of the soft error are spaced by 2M where M
is the number of SB. Note that as kvos decreases, the num-
ber of SB decreases and hence the error spacing becomes
smaller.
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Fig. 2. Illustration of soft error characteristics in a simple
4-by-4 carry ripple multiplier.

2.2. Main DSP Estimation Filter (MEF)

In the presence of soft errors, the output zn of an N -tap
MDSP filter can be expressed as

zn = yn + γ =
N−1∑
k=0

hkxn−k + γ, (2)

where xn, γ and hk are the system input, the soft error and
the filter coefficients respectively, and yn is the error free
output of the MDSP filter.

The MEF estimates the desired output, yn by using a
reduced order L(< N) and precision P (< B) replica filter.
Due to the reduced order and precision, the MEF introduces
quantization noise qn and estimation noise rn i.e.

qn = don − dn (3)

rn = yn − don (4)

where don is the full precision estimate of yn, and dn is its
quantized version. For effective error correction, we gener-
ate the residual signal vn by subtracting dn from zn, i.e.

vn = zn − dn = (yn + γ) − (don − qn) (5)

= γ + (rn + qn). (6)

Hence, in (6), the soft error γ, which we should detect, is
embedded in the pure estimation noise rn and the quantiza-
tion noise qn.

The MMSE MEF estimate, minimizing the mean squared
error between don and yn, is obtained by the Wiener-Hopf
equation given by

w0 = R−1
x p

= R−1
x ·

L−1∑
k=0

hk

⎡
⎢⎣

rxx(k)
...

rxx(k − L′ + 1)

⎤
⎥⎦ (7)

where Rx is the L-by-L autocorrelation matrix of xn and
rxx(·) is the autocorrelation function of xn. The power of
rn can be easily shown as

σ2
r = σ2

y − pT R−1p (8)

where σ2
y is the variance of yn.

Next, let us derive the quantization noise power σ2
q . We

assume that all the quantization noise is due to truncation
and all signals are represented in two’s complement form in
[−1, 1). The input xn consists of the truncated term xqn and
the quantization error term ∆xn. It can be shown that the
power of ∆xn is given by

E
[
∆xn

2
]

=
1
6

(
2

22P
− 3

2B+P
+

1
22B

)
(9)

where ∆xn is assumed to be uniformly distributed. In ad-
dition, the coefficient wn consists of the truncated term wqn

and remaining error term ∆wn. The quantization noise power,
σ2

q can be shown to be

σ2
q =

L′−1∑
j=0

L′−1∑
k=0

∆wjrxx(j − k)∆wk

+
L′−1∑
k=0

wqk
2E

[
∆xn

2
]

(10)
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where we assume that xn has zero mean, and xn and ∆xn

are uncorrelated, and that wqk and ∆wk are known and non-
random. From (8) and (10) and assuming that rn and qn are
uncorrelated, the variance of the signal gn(= rn + qn) can
be written

σ2
g = σ2

r + σ2
q . (11)

Fig. 3 illustrates the distributions of zn and vn(= zn − dn)
after applying the MEF. The variance of the residual output
vn is smaller than that of the MDSP output zn. By exploit-
ing this spacing property of the soft errors, we can detect
and estimate the soft error with improved accuracy.

2.3. ML-based Soft Error Detection and Estimation

Based on observation of vn so far, soft errors can be detected
and estimated via an ML-based algorithm. If we suppose
that xn has a Gaussian distribution with zero mean, then rn

is also Gaussian. If the precision of MEF, P is sufficiently
large, the effect of qn can be approximated such that the
distribution of rn + qn is Gaussian with N(0, σ2

r + σ2
q ).

2.3.1. Soft Error Detection

The hypothesis test for the soft error detection can be for-
mulated as

H0 : vn = rn + qn

H1 : vn = rn + qn + γ (12)

where γ has a value among the set Ω = {k2−B+M
∣∣ k ∈

Z, k ∈ [−2B−M , 2B−M )} due to the spacing property. Since
γ is an unknown parameter, this can be interpreted as a com-
posite hypothesis test with generalized likelihood ratio test
(GLRT) given by [5]

Λ(vn) = max
γ∈Γ

P (vn|γ, H1)
P (vn |H0)

(13)

= max
γ∈Γ

1√
2πσg

exp
(
− (vn−γ)2

2σ2
g

)
1√

2πσg
exp

(
− v2

n

2σ2
g

) H1

≷
H0

τ (14)

where τ is an appropriately selected threshold. If we denote
γmax as the argument γ which maximizes the left term of
(14), the GLRT rule is rewritten as

v2
n − (vn − γmax)

2

2σ2
g

≈ v2
n

2σ2
g

H1

≷
H0

ln τ (15)

where the approximation is based on the fact that γmax be-
comes the ML estimator of γ. Specifically, the approx-
imation holds since v2

n � (vn − γmax)
2 under H1, and

vn − γmax ≈ 0 under H0. Rewriting (15), we obtain an
approximate rule given by∣∣∣∣vn

σg

∣∣∣∣ H1

≷
H0

τ ′ =
√

2 ln τ . (16)
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Fig. 3. Distributions of (a) the noisy MDSP output zn(=
yn + γ) and (b) the residual output vn(= gn + γ)

The corresponding false alarm and miss probability of the
GLRT detector are, respectively, given by

PF
e = 2Q(τ ′) (17)

PM
e = Q

(
−τ ′ − γ0

σg

)
− Q

(
τ ′ − γ0

σg

)
(18)

where Q(x) =
∫ ∞

x
1√
2π

exp
(−t2/2

)
dt and γ0 is the actual

error amplitude. Since PM
e is a monotonically increasing

function of σg , we deduce that the reduced variance due to
the MEF improves the performance of the GLRT detector.

2.3.2. Soft Error Estimation

The ML estimate of the detected soft error is obtained by
finding γmax which maximizes P (vn|γ, H1). The ML es-
timate, γ satisfying this condition is given by

γML = 2−B+M i , where∣∣vn − 2−B+M i
∣∣ ≤ ∣∣vn − 2−B+M j

∣∣ for ∀j (19)

where i and j are integers between
[−2B−M , 2B−M

)
. Es-

sentially, the ML-based estimator selects the closest candi-
date from vn among all possible. The variance of γML,
which measures the performance of the ML estimate, is
given by

E
[
(γML − γ)2

]
= 2c2

∞∑
i=0

i2

[
Q

(
c

σg

(
i − 1

2

))

−Q

(
c

σg

(
i +

1
2

)) ]
, (20)

where c = 2−B+M . Since small σg leads to small variance
of γML, we see that MEF also improves the accuracy of
ML-based estimator.
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3. SIMULATIONS AND RESULTS
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Fig. 4. Several signal plots when kvos is set to 0.6. (a) yn,
(b) zn(= yn + γ), (c) ŷn and (d) yn − ŷn.

In this section, we present simulation results to evalu-
ate the performance of ML-based method. The simulation
is performed based on 0.25µm, 2.5V CMOS process tech-
nology. We designed a 26-tap FIR low-pass filter with pass-
band of [0, π/5]. The filter input and coefficients are quan-
tized into 16 bit precision, and a bandlimited signal plus the
white Gaussian noise is used as the input signal. Without
VOS, the SNR measured at the MDSP output is 26.47 dB.
Hence, if we set the tolerable noise margin to 1.47 dB, we
should meet a 25 dB SNR requirement.

Fig. 4 (a) and Fig. 4 (b) show the clean desired signal yn

and noisy output zn due to VOS at kvos = 0.6. Fig. 4 (c) and
Fig. 4 (d) show plots of the restored signal and correction er-
ror when the MEF has 4 taps and 12 bits of precision. Fig. 5
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Fig. 5. SNR performance vs. power saving (%).

shows the SNR performance vs. power savings in case of
an uncorrected, the ML-EC scheme, and the algorithms of
[3, 4]. It is shown that the ML-EC technique achieves up
to 47% power savings without any SNR loss and up to 60%
power savings subject to 1.47 dB SNR loss which satisfies
the desired SNR requirement. From these results, we ob-
serve that the ML-based algorithm shows promising perfor-
mance and outperforms the conventional PEC [3] and RPR
[4].
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