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ABSTRACT

In this paper, we present a method based on the Matching Pur-

suits algorithm for extraction of time-frequency features that can

be used for classification of various abnormal heartbeats. Further,

we investigate the usefulness of Independent Component Analysis

for extracting additional spatial features from multichannel elec-

trocardiographic recordings. The performance of these two dif-

ferent sets of features is assessed using the 48 recordings of the

MIT-BIH arrhythmia database.

1. INTRODUCTION

Analysis of the electrocardiogram (ECG) for detecting different

types of heartbeats is of major importance in the diagnosis of car-

diac dysfunctions. Some arrhythmias appear infrequently, and very

long ECG recordings, the so called Holter ECG, are needed to

capture them. Analysis of such large amount of data is very time

consuming and, therefore, automatic processing systems can be of

great assistance to the clinician. In critical care or operating room

patient monitoring, computer-assisted real-time classification of

abnormal ventricular beats is of considerable importance.

Automatic detection of abnormal cardiac conditions has been

previously done using a variety of features to represent the ECG

waveform. Most popular approaches are based on pattern recogni-

tion techniques using morphological features of the different ECG

complexes (e.g. [1, 2]). However, several approaches using differ-

ent sets of features to represent the ECG can be found in the litera-

ture (e.g. Hermite functions [3], cumulant features [4], wavelets [5],

etc). Despite the high detection accuracies obtained by morpho-

logical approaches they have several disadvantages. First, they

rely on threshold-based segmentation techniques to separate the

different ECG complexes. These techniques are highly sensitive

to the large morphological variations of the ECG not only between

different patients or patient groups but also within the same pa-

tient. Second, the class of waveforms that can be effectively char-

acterized by such kind of features is limited. Some methods use

only the morphology of the QRS complex [2], while others include

also morphological features of the P and T waves [1]. However,

we cannot use morphological features of the P, T or QRS waves

to describe cardiac patterns that do not have clear P, T and QRS

complexes. Therefore, morphological features are not suitable for

describing ventricular fibrillation and some types of tachycardia.

Time-frequency features have been previously used to char-

acterize the ECG [4], [5]. Those studies use linear expansions of

the ECG waveforms into a single time-frequency basis such as a

wavelet basis. However, it is clear that some ECG patterns are bet-

ter described in terms of their frequency content (expansion in a

Fourier basis) while others have well localized temporal structures

and are better characterized by their time representation (expan-

sion in a Dirac basis). In this paper we propose a general method

for selecting the time-frequency basis that is best suited to the de-

tection of different beat patterns. The procedure is based on the

Matching Pursuit algorithm [6].

Spatial information contained in multichannel ECG record-

ings can also be used to extract features for heartbeat classifica-

tion. In this contribution we used Independent Component Analy-

sis (ICA) for the extraction of the spatial features.

2. METHODS

Fig. 1 depicts an automated heartbeat classification system based

on the time-frequency and ICA features proposed in this study. We

used, for training and testing, the MIT-BIH arrhythmia database [7]

consisting of two leads ECG recordings. The heartbeats are de-

tected using the fiducial points of the database and extracted us-

ing a window of samples of fixed size around each fiducial point.

Using the two ECG channels, the ICA block estimates, for each

heartbeat, a projection matrix minimizing the statistical depen-

dence among the dimensions of the projected data. The compo-

nents of this matrix are used as features for the classification stage.

The time-frequency feature extraction projects every heartbeat into

different sets of wavelet packet atoms that are selected to match the

characteristic structures of the different types of beats we are try-

ing to classify. Finally, the time-frequency and ICA features are

classified using neural networks.

2.1. Matching Pursuit Denoising

Let (st)
n−1
t=0 be a discrete-time 1-dimensional noisy signal and D

a dictionary of waveforms
(
φγ

)
γ∈Γ

, with γ being the indexing

parameter of the dictionary. The waveforms φγ are discrete-time

1-dimensional signals of length n called atoms. Using columnwise

notation, we denote φγ = [φγ,0, ..., φγ,n−1]
T

and s = [s0, ..., sn−1]
T

.

We face the problem of finding an approximate decomposition of

s:

s =
m∑

i=1

αγi
φγi

+ r
(m)

(1)

such that ŝ(m) =
∑m

i=1 αγi
φγi

is the estimated noise-free signal,

r
(m) =

[
r
(m)
0 , ..., r

(m)
n−1

]T

is a n×1 column vector containing the

noise, and (αγi
)n−1
i= 0 are a set of scalar coefficients. Matching Pur-

suit [6] is a greedy algorithm for finding such kind of approximate

decompositions. The specific Matching Pursuit denoising scheme
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Fig. 1. Scheme of the proposed system for automatic classification of ECG heartbeats

used in this study is described by the following iteration:

ŝ
(0) = 0

r
(0) = s

i = 1
while (i ≤ m)

γi = arg maxγ

∥∥∥
〈
r
(i−1), φγ

〉∥∥∥
1

αγi
=

〈
r
(i−1), φγi

〉

ŝ
(i) = ŝ

(i−1) + αγi
φγi

r
(i) = s − ŝ

(i)

i = i + 1
end

where ‖·‖1 denotes the l1 norm and 〈·〉 is the inner product. There-

fore, Matching Pursuit selects the m atoms among the available

waveforms in the dictionary that best correlate the signal struc-

tures. The iteration can be stopped when the coefficient associ-

ated with the selected atom falls below a threshold [8] or when a

certain number of atoms is reached. We decided to use the latter

approach in order to be sure of considering as useful signal, not

only the QRS complex, but also the less energetic P and T waves.

For determining the number of required atoms to describe a Nor-

mal Sinus Beat (NSB) we used the NSBs in the first channel of

recording 100 of the MIT-BIH database (which show a high signal

to noise ratio). Using only 10 atoms of a Symmlet 8 wavelet packet

dictionary, the average residual energy for those beats was as low

as 1.45%. In order to have a security margin and guarantee that

not any important features of other heartbeat types are discarded

during the denoising, we decided to choose 15 atoms as stopping

criterion for the Matching Pursuits iteration.

2.2. Time-Frequency feature extraction

For the time-frequency feature extraction we employ wavelet pack-

ets because they have high localization power and represent over-

complete dictionaries. However, the same feature extraction pro-

cedure can be used with any other type of dictionaries (e.g. Ga-

bor, cosine packets, stationary wavelets, etc). Before proceed-

ing with the actual feature extraction several subdictionaries of

wavelet packet atoms matching the characteristics of the differ-

ent types of heartbeats are constructed. This is done using training

data and according to the following steps:

1. The set of heartbeats contained in the training dataset are

denoised using the Matching Pursuit algorithm described

above. Let ŝ(j) be the denoised jth heartbeat and let Γ de-

note the set of indexes for the full wavelet packet dictionary

and Γ(j) the set of indexes corresponding to the atoms that

were selected during the Matching Pursuit denoising proce-

dure for the jth beat. Then, we can express each denoised

heartbeat as:

ŝ
(j) =

∑
γ∈Γ

α(j)
γ φγ (2)

where α
(j)
γ = 0 ∀γ /∈ Γ(j).

2. Let Ck denote the set of indexes of the training heartbeats

belonging to class k. We select the m wavelet packet atoms

(φγi
)m

i=1 that best match the structures of class Ck in the

following way:

i = 1
while (i ≤ m)

γi = arg maxγ

∑
j∈Ck

∥∥∥α
(j)
γ

∥∥∥
1

α
(j)
γi

= 0 ∀j ∈ Ck

i = i + 1
end
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The procedure above ranks the atoms according to their av-

erage l1 norm across the beats belonging to class Ck. The

atoms having the greatest average l1 norm are assumed to

represent the most important and stable signal structures.

Once the feature extraction stage has learned the structures of

each beat type the actual feature extraction can take place. For N
possible heartbeat types, let (ΓCk

)N

k=1 be the N sets of indexes

of the atoms that were selected for representing the characteristic

features of the N classes. Then, each heartbeat to be classified is

decomposed into these N underdetermined dictionaries of wavelet

packets. Let s denote the column vector containing the heartbeat

samples and ΦΓCk
the matrix whose columns are the atoms se-

lected for class Ck. Then, this decomposition can be performed

by:

s = ΦΓCk
αCk

+ rΓCk

= ΦΓCk

(
Φ†

ΓCk

s

)
+

(
s − ΦΓCk

(
Φ†

ΓCk

s

))
(3)

where † denotes the Moore-Penrose pseudoinverse. We propose to

use as features for heartbeat classification the m expansion coeffi-

cients αCk
as well as the normalized energy of the residual:

βCk
=

∥∥∥rΓCk

∥∥∥
2

‖s‖2 (4)

If a heartbeat belongs to class Ck then the atoms with indexes in the

set ΓCk
are, probably, well correlated with its underlying structures

and βCk
should be small. On the contrary, if a beat does not belong

to class Ck then, most likely, its local structures do not correlate

well with the atoms with indexes in ΓCk
and βCk

is expected to be

large.

2.3. ICA feature extraction

ICA can be defined as a statistical technique for projecting mul-

tivariate signals into independent directions. It can be shown [9]

that ICA is able to solve the basic Blind Source Separation (BSS)

problem in which a set of linear mixtures x1(t), ..., xm(t) of as

many unknown independent sources s1(t), ..., sm(t) are observed

and we want to determine the source signals given only the mix-

tures, i.e., given the system:

x = As (5)

where s = [s1(t), ..., sm(t)]T , x = [x1(t), ..., xm(t)]T and A

is the unknown mixing matrix, we want to estimate a demixing

matrix Ŵ = Â
−1. In order to solve this estimation problem,

ICA assumes the sources to be non-gaussian mutually independent

random variables and the mixing matrix to be full rank. Under

these assumptions, the mixing matrix A can be estimated up to a

row permutation and scale factor.

It is generally assumed that the signals recorded in a set of

ECG channels can be quite accurately modeled as a linear (instan-

taneous) mixture of some independent cardiac electrical sources.

Different heartbeat types are likely to have different spatial local-

izations of the electrical sources generating the ECG. These differ-

ent spatial localizations may result in different electrical transmis-

sion matrices and therefore different estimated mixing matrices.

Based on this idea, we propose to use the estimated mixing matrix

Â as features for cardiac beat classification. Computer simulations

using the MIT-BIH arrhythmia database showed that the discrimi-

nation performance of the ICA features is especially good for beat

types having very different spatial localization of their electrical

generators. This is the case e.g. of the paced beats.

2.4. Classifier

The classification stage, depicted in Fig. 1, consists of a set of sev-

eral classifiers trained for detecting a certain class of heartbeats

and reject any other type. The input to the classifier trained to

detect class Ck are the expanding coefficients αCk
and the normal-

ized residual energy βCk
when decomposing the current heartbeat

as shown in Eq. 3.

We used as classifiers 3-layers Neural Networks with resilient

backpropagation learning algorithm. All the neurons had hyper-

bolic tangent sigmoid transfer function. The number of neurons

in the input layer was equal to the number of input features, there

were half as many neurons in the hidden layer and a single neuron

in the output layer.

3. RESULTS

3.1. ECG database

We have tested the performance of the proposed features for heart-

beat classification using the 48 recordings from the MIT-BIH ar-

rhythmia database [7]. Each recording contains two leads of 30-

min ECG signals. The data are bandpass filtered at 0.1-100 Hz and

the sampling frequency is 360 Hz. 50% of the available heartbeats

were used for training and 50% for testing the performance of the

trained classification system.

3.2. Classification of NSB and PVC

In the first experiment we use only the heartbeats belonging to the

classes Normal Sinus Beat (NSB) and Premature Ventricular Con-

traction (PVC). The performance was assessed in terms of sensi-

tivity (correct detection of NSB) and specificity (correct detection

of PVC). Fig. 2 shows the sensitivity and the specificity of the clas-

sifier when using only the time-frequency features and varying the

number of features used.

The optimum feature extraction stage used 10 time-frequency

atoms for each channel and each beat type. The sensitivity ob-

tained for that configuration was 99.9% and the specificity 96.1%.

When we included the ICA features in the classification process,

the specificity of the system increased to 97.9% and the sensitiv-

ity slightly decreased to 99.8%. Therefore, we can conclude that

the best performance was obtained with the configuration using 10

time-frequency atoms to describe each class and the mixing ma-

trix coefficients estimated by ICA. This accounted for a total of 48

features, i.e. 10 expansion coefficients and 1 normalized residual

energy coefficient for each channel and class, plus the 4 elements

of the estimated mixing matrix.

These results are similar to the obtained with the best classi-

fier based on heartbeat interval and QRS morphological features

found in [2], where the accuracy of detecting NSBs and PVCs was

of 99.7% and 98.5% respectively. Although in [2] only 26 features

were used for classification and our system uses 48 features, our

approach is more flexible and presents many possibilities for im-

provement that have not been investigated yet. On the contrary,

morphological and heartbeat interval features have already been

IV - 727

➡ ➡



2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

90

100

Number of atoms

A
c
c
u
ra

c
y
 (

%
)

Sensitivity

Specificity

Fig. 2. Classification performance of the NSB/PVC classifier ver-

sus the number of time-frequency atoms used

class Number Sens. Sens. Spec. Spec.

of beats (1) (2) (1) (2)

NSB 30139 99.74 99.63 98.79 99.23

LBBB 3206 99.06 99.34 99.96 99.94

RBBB 2895 99.55 99.48 99.94 99.94

PVC 2883 94.97 95.32 99.82 99.85

PB 2848 99.58 99.68 99.93 99.74

Table 1. Performance of the multiclass classifier in terms of Sen-

sitivity and Specificity: (1) when using only the time-frequency

features and (2) when using the time-frequency and ICA features.

extensively studied in [1] and [2] and their performance has been

highly optimized.

3.3. Classification of NSB, LBBB, RBBB, PVC and PB

In the second experiment, we test the classification performance

when considering the 5 largest classes of heartbeats in the MIT-

BIH arrhythmia database: Normal Sinus Beats (NSB), Left Bun-

dle Branch Block (LBBB), Right Bundle Branch Block (RBBB),

Premature Ventricular Contraction (PVC) and Paced Beats (PB).

We used 10 atoms per class and channel and the ICA features.

The results compared with the results obtained when we do not in-

clude the ICA features are shown in Table 1 . We can observe that

the ICA features improve the system’s ability of discriminating

between NSBs and abnormal beats which can be of considerable

importance in clinical use.

The performance of the system using both time-frequency and

ICA features is remarkably good, with specificities and sensitiv-

ities for the different classes over 99% except for the PVC class.

The relatively low specificity for the PVCs can be explained by the

fact that, in the case of ventricular pacing, the QRS complex may

be wide and bizarre, and the T wave may be inverted, as in the case

of PVCs. This makes the separation between ventricular PBs and

PVCs complicated.

4. CONCLUSIONS

In this paper we have proposed a new method for selecting time-

frequency features that can be used for heartbeats classification.

We also introduced ICA as a feature extractor for the processing

of the ECG. Using the MIT-BIH arrhythmia database and the pro-

posed features, simulation results showed a classification accuracy

of 99.8 % for NSBs and 97.9 % for PVCs. Furthermore, the system

performance was also very good when classifying 5 types of beats:

NSB, LBBB, RBBB, PVC and PB, with classification accuracies

over 95% for the 5 beat types. The computing power required by

the proposed system is very high during the training of the feature

extractors. However, once the system has been trained, the extrac-

tion of the time-frequency features only requires the projection of

the new beats into the selected wavelet packets atoms. Calculation

of the projection coefficients by simple matrix multiplication can

be done in a time proportional to O(MLNn), M being the num-

ber of data classes, L the number of ECG channels, N the number

of atoms used, and n the number of samples of each heartbeat. The

ICA feature extraction requires more complex operations but there

exist fast ICA algorithms (e.g. JADE [10]) that are suitable for

real-time operation when we have to process just few ECG chan-

nels.
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